The human gut microbiota is a dynamic community of microorganisms that undergo variable changes over the entire life span. To thoroughly investigate the possible fluctuations of the microbiota throughout human life, we performed a pooled analysis of healthy fecal samples across different age groups covering the entire human life span. Our study integrated data from 79 publicly available studies and new stool samples from an Italian cohort, i.e., the Parma Microbiota project, resulting in 6,653 samples processed through the shotgun metagenomic approach. This approach has allowed species-level taxonomic reconstruction of the gut microbiota and investigation of its metabolic potential across the human life span. From a taxonomic point of view, our findings confirmed and detailed at species-level accuracy that the microbial richness of the gut microbiota gradually increases in the first stage of life, becoming relatively stable during adolescence. Moreover, the analysis identified the potential core microbiota representative of distinct age groups, revealing age-related bacterial patterns and the continuous rearrangement of the microbiota in terms of relative abundances across the life span rather than the acquisition and loss of taxa. Furthermore, the shotgun approach provided insights into the functional contribution of the human gut microbiome. The metagenomic analysis revealed functional age-related differences, particularly in carbohydrate and fiber metabolism, suggesting a co-evolution of the microbiome assembly with diet. Additionally, we identified correlations between vitamin synthesis, such as thiamine and niacin, and early life, suggesting a potential role of the microbiome in human physiology, in particular in the functions of the host’s nervous and immune systems. IMPORTANCE In this study, we provided comprehensive insights into the dynamic nature of the human gut microbiota across the human life span. In detail, we analyzed a large data set based on a shotgun metagenomic approach, combining public data sets and new samples from the Parma Microbiota project and obtaining a detailed overview of the possible relationship between gut microbiota development and aging. Our findings confirmed the main stages in microbial richness development and revealed specific core microbiota associated with different age stages. Moreover, the shotgun metagenomic approach allowed the disentangling of the functional changes in the microbiome across the human life span, particularly in diet-related metabolism, which is probably correlated to bacterial co-evolution with dietary habits. Notably, our study also uncovered positive correlations with vitamin synthesis in early life, suggesting a possible impact of the microbiota on human physiology.

Taxonomic and metabolic development of the human gut microbiome across life stages: a worldwide metagenomic investigation / Mancabelli, L.; Milani, C.; De Biase, R.; Bocchio, F.; Fontana, F.; Lugli, G. A.; Alessandri, G.; Tarracchini, C.; Viappiani, A.; De Conto, F.; Nouvenne, A.; Ticinesi, A.; Bussolati, O.; Meschi, T.; Cecchi, R.; Turroni, F.; Ventura, M.. - In: MSYSTEMS. - ISSN 2379-5077. - 9:4(2024), pp. 1-17. [10.1128/msystems.01294-23]

Taxonomic and metabolic development of the human gut microbiome across life stages: a worldwide metagenomic investigation

Lugli G. A.;Cecchi R.;Turroni F.;
2024

Abstract

The human gut microbiota is a dynamic community of microorganisms that undergo variable changes over the entire life span. To thoroughly investigate the possible fluctuations of the microbiota throughout human life, we performed a pooled analysis of healthy fecal samples across different age groups covering the entire human life span. Our study integrated data from 79 publicly available studies and new stool samples from an Italian cohort, i.e., the Parma Microbiota project, resulting in 6,653 samples processed through the shotgun metagenomic approach. This approach has allowed species-level taxonomic reconstruction of the gut microbiota and investigation of its metabolic potential across the human life span. From a taxonomic point of view, our findings confirmed and detailed at species-level accuracy that the microbial richness of the gut microbiota gradually increases in the first stage of life, becoming relatively stable during adolescence. Moreover, the analysis identified the potential core microbiota representative of distinct age groups, revealing age-related bacterial patterns and the continuous rearrangement of the microbiota in terms of relative abundances across the life span rather than the acquisition and loss of taxa. Furthermore, the shotgun approach provided insights into the functional contribution of the human gut microbiome. The metagenomic analysis revealed functional age-related differences, particularly in carbohydrate and fiber metabolism, suggesting a co-evolution of the microbiome assembly with diet. Additionally, we identified correlations between vitamin synthesis, such as thiamine and niacin, and early life, suggesting a potential role of the microbiome in human physiology, in particular in the functions of the host’s nervous and immune systems. IMPORTANCE In this study, we provided comprehensive insights into the dynamic nature of the human gut microbiota across the human life span. In detail, we analyzed a large data set based on a shotgun metagenomic approach, combining public data sets and new samples from the Parma Microbiota project and obtaining a detailed overview of the possible relationship between gut microbiota development and aging. Our findings confirmed the main stages in microbial richness development and revealed specific core microbiota associated with different age stages. Moreover, the shotgun metagenomic approach allowed the disentangling of the functional changes in the microbiome across the human life span, particularly in diet-related metabolism, which is probably correlated to bacterial co-evolution with dietary habits. Notably, our study also uncovered positive correlations with vitamin synthesis in early life, suggesting a possible impact of the microbiota on human physiology.
2024
9
4
1
17
Taxonomic and metabolic development of the human gut microbiome across life stages: a worldwide metagenomic investigation / Mancabelli, L.; Milani, C.; De Biase, R.; Bocchio, F.; Fontana, F.; Lugli, G. A.; Alessandri, G.; Tarracchini, C.; Viappiani, A.; De Conto, F.; Nouvenne, A.; Ticinesi, A.; Bussolati, O.; Meschi, T.; Cecchi, R.; Turroni, F.; Ventura, M.. - In: MSYSTEMS. - ISSN 2379-5077. - 9:4(2024), pp. 1-17. [10.1128/msystems.01294-23]
Mancabelli, L.; Milani, C.; De Biase, R.; Bocchio, F.; Fontana, F.; Lugli, G. A.; Alessandri, G.; Tarracchini, C.; Viappiani, A.; De Conto, F.; Nouven...espandi
File in questo prodotto:
File Dimensione Formato  
Gut microbiome.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 4.84 MB
Formato Adobe PDF
4.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1347350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact