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ABSTRACT The human gut microbiota is a dynamic community of microorganisms 
that undergo variable changes over the entire life span. To thoroughly investigate the 
possible fluctuations of the microbiota throughout human life, we performed a pooled 
analysis of healthy fecal samples across different age groups covering the entire human 
life span. Our study integrated data from 79 publicly available studies and new stool 
samples from an Italian cohort, i.e., the Parma Microbiota project, resulting in 6,653 
samples processed through the shotgun metagenomic approach. This approach has 
allowed species-level taxonomic reconstruction of the gut microbiota and investigation 
of its metabolic potential across the human life span. From a taxonomic point of 
view, our findings confirmed and detailed at species-level accuracy that the microbial 
richness of the gut microbiota gradually increases in the first stage of life, becoming 
relatively stable during adolescence. Moreover, the analysis identified the potential core 
microbiota representative of distinct age groups, revealing age-related bacterial patterns 
and the continuous rearrangement of the microbiota in terms of relative abundances 
across the life span rather than the acquisition and loss of taxa. Furthermore, the 
shotgun approach provided insights into the functional contribution of the human 
gut microbiome. The metagenomic analysis revealed functional age-related differences, 
particularly in carbohydrate and fiber metabolism, suggesting a co-evolution of the 
microbiome assembly with diet. Additionally, we identified correlations between vitamin 
synthesis, such as thiamine and niacin, and early life, suggesting a potential role of the 
microbiome in human physiology, in particular in the functions of the host’s nervous and 
immune systems.

IMPORTANCE In this study, we provided comprehensive insights into the dynamic 
nature of the human gut microbiota across the human life span. In detail, we analyzed 
a large data set based on a shotgun metagenomic approach, combining public data 
sets and new samples from the Parma Microbiota project and obtaining a detailed 
overview of the possible relationship between gut microbiota development and aging. 
Our findings confirmed the main stages in microbial richness development and revealed 
specific core microbiota associated with different age stages. Moreover, the shotgun 
metagenomic approach allowed the disentangling of the functional changes in the 
microbiome across the human life span, particularly in diet-related metabolism, which is 
probably correlated to bacterial co-evolution with dietary habits. Notably, our study also 
uncovered positive correlations with vitamin synthesis in early life, suggesting a possible 
impact of the microbiota on human physiology.
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T he human gut microbiota, a rich and variable consortium of microorganisms residing 
in the intestinal tract (1–3), plays a crucial role in numerous aspects of human 

biology, including metabolic health to immune functions (3–5). This complex commun
ity, predominantly bacterial, undergoes dynamic changes throughout an individual’s life, 
reflecting the interplay between microbial communities and host development (6, 7). 
In early life, the gut is gradually colonized, with its microbiota being highly dynamic 
and influenced by factors such as delivery mode and breastfeeding (8–10). Initially, it is 
characterized by Actinomycetota and Pseudomonadota (formerly known as Actinobacte
ria and Proteobacteria, respectively) (2, 11, 12). As children grow, significant shifts occur 
in the gut microbiota (13, 14), adapting to dietary changes from breastfeeding to solid 
foods (15).

Despite the current limited research focusing on the gut microbiota during human 
adolescence, it is widely suggested that, during this crucial window of time, the gut 
microbial community undergoes significant transformations and evolutions (16, 17). In 
fact, hormonal changes, dietary preferences, and lifestyle factors may exert influences on 
the gut microbial ecosystem (18–21). Notably, during adolescence, the microbiota tends 
to shift toward that of an adult, which is characterized by an increase in microbial genera 
belonging to the phyla Bacteroidota and Bacillota (formerly known as Bacteroidetes 
and Firmicutes, respectively), such as Bacteroides, Prevotella, Blautia, and Faecalibacterium 
(22).

Compared with infants and adolescents, adults are endowed with a microbiota 
characterized by increased stability and resilience (23–25). Its composition is strongly 
influenced by lifestyle-related factors such as diet (20, 26) and physical activity (27, 28). 
Numerous studies have revealed that a diverse and stable gut microbiota in adults 
is associated with improved metabolic and immune health, while an imbalance in 
composition can be linked to various pathological conditions (1, 29, 30). In fact, the 
balance between the major phyla and genera of the adult gut microbiota plays a crucial 
role in ensuring the host’s well-being and fulfilling essential metabolic and immunologi
cal functions (1, 24).

In the later stages of life, elderly people experience another shift in their gut 
microbiota composition, which is characterized by a decrease in bacterial richness, 
particularly in beneficial species such as Bifidobacterium, Akkermansia, and members of 
Clostridium Clusters IV (31, 32). These changes may affect immune function, nutrient 
absorption, and susceptibility to age-related conditions, such as frailty and chronic 
diseases (31, 33, 34).

In this context, comprehensive studies with robust statistical power that investigate 
the detailed evolution of the gut microbiota across the life span have been notably 
limited and mainly focused on specific age groups (11, 35–39). Furthermore, a critical 
knowledge gap remains despite the wealth of knowledge gained in recent years. 
Currently, most of the existing studies are based on the 16S rRNA gene profiling 
approach (40), providing insights of the microbiota composition at the genus level but 
lacking the precision required for species-level analysis (41).

Given these critical gaps of knowledge, our study aims to perform the most extensive 
gut microbiota analysis based on publicly available shotgun metagenomic data sets 
regarding studies of the healthy human microbiome across life spans. In detail, we 
have assembled a very complete data set encompassing 6,653 samples representing 
various age groups and geographical regions, including 467 samples that originated 
from a still ongoing local population study, the Parma Microbiota project. This approach 
enables a more in-depth examination of taxonomic compositions at the species level 
and the microbiome’s functionality, providing a comprehensive and statistically robust 
exploration of the intricate relationship between age and microbiome composition.
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RESULTS

Data set selection

An extensive metagenomic data set search was performed to retrieve the largest number 
of publicly available shotgun metagenomic studies related to the human microbiome 
of healthy individuals. In detail, we collected data from 79 publicly available data sets 
that included healthy human fecal samples based on Illumina shotgun metagenomic 
methodologies (Fig. S1a; Table S1). In detail, in this pooled analysis, we included only 
studies in which it was possible to clearly identify the healthy status and the age of the 
individuals through the reported metadata. Moreover, as part of the Parma Micro
biota project, fresh fecal samples from 467 healthy Italian individuals were collected, 
sequenced, and analyzed (Table S1). Thus, the pooled analysis included a total of 6,653 
healthy fecal samples ranging from birth to over 100 years old (Tables S1 and S2) with a 
robust statistical representation of all the different age groups (see below).

Intra-individual variability across human life

The 6,653 stool samples collected in this pooled analysis were used to assess the 
microbiota composition through the METAnnotatorX2 software (42) following the 
standard filtering parameters reported in the manual with Homo sapiens reads removal. 
The downloaded and the sequenced fastq files were processed with the same bioin
formatic pipeline to prevent biases, resulting in a total of 110,384,672,113 reads with 
an average per sample of 14,885,023 ± 16,560,451 after quality and human sequence 
filtering (Table S2). To optimize the taxonomical analysis, following a shallow shotgun 
metagenomic approach (42, 43), we decided to analyze, after quality and human 
sequence filtering, a random subset of up to 100,000 reads for each sample, obtaining a 
total of 424,267,507 classified reads with an average per sample of 63,771 ± 13,611 (Table 
S2). As previously reported, this approach allowed the optimization of the bioinformatic 
pipeline, ensuring accurate taxonomic profiling. Additionally, it promotes reliable profile 
comparisons by mitigating disparities resulting from variations in the total number of 
analyzed reads (42, 43).

The results generated using METAnnotatorX2 software (42) were employed to assess 
the biodiversity of each sample. In detail, to explore potential variations in species 
richness throughout the human life span, we categorized the samples into four age 
groups, that is, G1 (0–4 years), G2 (5–17 years), G3 (18–64 years), and G4 (65 years and 
older) (Fig. S1), following the guidelines provided by the World Health Organization 
(WHO) (44). The analysis revealed an increase in bacterial species abundance with age, 
as highlighted by a pairwise Kruskal-Wallis test (P < 0.01). Specifically, there was a 
substantial difference between G1 (average of 42 ± 23) and G2, G3, and G4 groups 
(average of 84 ± 20, 83 ± 20, and 86 ± 21, respectively) (Fig. 1A). No significant differ
ences were identified between G2, G3, and G4 groups (Fig. 1A). These results support 
the notion that the human gut microbiome undergoes developmental changes in the 
early stages of life, showing increasing complexity in terms of bacterial species until 
the human host reaches childhood and adolescence (5–17 years) (23). Subsequently, 
in the later stages of life, the gut microbiome reaches stability, with the number of 
bacterial species remaining relatively constant. In addition, a subdivision of the samples 
into further age subgroups (Fig. S1a) showed no significant differences between G1a 
(0–1 month) and G1b (1–6 months), indicating the presence of a heterogeneous and 
complexity-varying microbiota (14). Moreover, the G1c (6 months–1 year) and G1d (1–4 
years) groups showed a significant trend of increase in species number until reaching the 
G2a group (5–10 years), where the gut microbiota appears to achieve a stable state that 
persists in subsequent age groups (pairwise Kruskal-Wallis test P > 0.05) (Fig. S1a).

Inter-individual variability between different stages of life

Principal coordinate analysis (PCoA), based on the Bray-Curtis dissimilarity matrix, was 
used to evaluate the inter-individual differences between age groups. In detail, the 
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FIG 1 Evaluation of microbial biodiversity. Panel (a) displays the whisker plot representing the species richness identified by subjects of each age group. 

The x‐axis represents the different age groups, while the y‐axis indicates the number of species. The 25th and 75th percentiles determine the boxes. The 

whiskers are determined by the 1.5 interquartile range (IQR). The line in the boxes represents the median, while the square represents the average. Different 

(Continued on next page)
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statistical analysis based on PERMANOVA (Table S3) revealed a clear division between the 
groups (pairwise PERMANOVA q < 0.01). Furthermore, the pairwise pseudo-F values 
(Table S2) evaluation highlighted a clear separation between the G1 group and the 
others, which exhibited heterogeneity among themselves (Fig. 1B). This division 
suggested a distinct microbiota composition of the G1 group samples, indicating a 
significant relationship between age and microbiota structure. Further fitting analyses, 
considering age and bacterial species as variables, identified Bifidobacterium longum as a 
key microbial taxon (envit fit P = 0.002, r² = 0.2751). This species appeared to exhibit a 
significant negative relationship with increasing age and is strongly associated with the 
G1 group. In contrast, other bacterial species with significant fittings (envit fit P < 0.005) 
displayed a positive relationship with increasing age, forming three distinct clusters. A 
prevalence of species from the Prevotella genus, such as Prevotella copri (recently 
classified as Segatella copri), characterized the first cluster. Bacteroides uniformis and 
Alistipes putredinis characterized the second cluster, while the third cluster exhibited 
diverse bacterial genera commonly associated with the adult gut microbiota, including 
Ruminococcus, Roseburia, and Faecalibacterium. These three clusters appeared to reflect 
the typical enterotypes of adults (45) but provided greater species-level detail. Moreover, 
the fitting analysis could highlight that enterotype 3, which is associated with the genus 
Ruminococcus, might instead consist of a complex community of bacteria with a less 
clear dominance of driver species (46, 47).

In addition to the age parameters, we also tested the potential impact of the variables 
related to the BioProject and nation of the samples on microbiota composition using 
PERMANOVA analysis. This analysis revealed q < 0.01 for both parameters, indicating 
statistical significance. However, the effect sizes measured by pseudo-F values were 16.7 
and 11.4 for BioProject and geographical origin, respectively. These findings suggest 
that, while these two parameters may have a statistically significant impact on micro
biota composition, their effect appears to be relatively modest. This observation could be 
assigned, in part, to the heterogeneous nature of the data set.

Identification of possible specific bacterial patterns related to different 
human stages of life

The METAnnotatorX2 software (42) allowed to obtain a detailed taxonomical profile at 
the species level for each sample. In detail, the sample size employed in this pooled 
analysis allowed the identification of agespecific core microbiota within each age group 
(Table S4). Core microbiota members were defined with a prerequisite of a minimum 
prevalence of 50% and an average relative abundance above 0.1% per age group. 
These criteria were chosen following the main standards in the field (48) and consider
ing taxonomic complexity at the species level. Additionally, species with a prevalence 
between 30% and 50%, along with an average relative abundance above 0.1% were 
classified as accessory taxa. The core microbiota of each age group highlighted that 
G1 group displayed the simplest core composition, including seven species mainly 
represented by B. longum and Escherichia coli species (Table S4). In contrast, G2, G3, 
and G4 groups displayed larger and more diversified core microbiota, composed of 68, 
57, and 63 species, respectively (Table S4). Accessory taxa exhibited a similar upward 
trend to the core, further validating the hypothesis that the gut microbiota demonstrates 

FIG 1 (Continued)

lowercase letters indicate significant differences at P <  0.05 calculated through pairwise Kruskal-Wallis test analyses. In detail, groups with the same letter are 

not significantly different from each other, while groups with different letters are considered statistically distinct. Panel (b) reports the whisker plot representing 

the alpha diversity calculated through the Shannon index identified by subjects of each age group. The x‐axis represents the different age groups, while 

the y‐axis indicates the Shannon index. The 25th and 75th percentiles determine the boxes. The whiskers are determined by the 1.5 IQR. The line in the 

boxes represents the median, while the square represents the average. Different lowercase letters indicate significant differences at P <  0.05 calculated through 

pairwise Kruskal-Wallis test analyses. In detail, groups with the same letter are not significantly different from each other, while groups with different letters 

are considered statistically distinct. Panel (c) shows the pooled analysis of PCoA, subdivided by age groups. The black rows indicate the bacterial species with 

significant fittings (envit fit P < 0.005).
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substantial compositional variability during the early developmental stages and then 
shifts to taxonomic stability with advancing age (2, 23).

In order to determine the mainly representative species that compose the human 
gut microbiota across the life span, the bacterial species common to both the core 
and accessory microbiota across all age groups were selected (Table 1). This extensive 
screening yielded 29 bacterial species, including B. uniformis, which was the only species 
present in all cores, and Bacteroides fragilis that was the only ubiquitous species as an 
accessory taxa (Table 1). Notably, 21 taxa were identified as accessory species exclusively 
in the G1 group, subsequently transitioning to become core members in the G2, G3, and 
G4 groups. This pattern suggests that the development of the microbiota is character
ized not only by the acquisition and loss of taxa but also by a significant rearrangement 
in their relative abundances. The early acquisition of certain species, pivotal in later life 
stages, highlights the critical role of microbiota enrichment during the initial phases of 
development. Moreover, among the microbial taxa representing the core microbiota of 
the G1 age group, only B. longum remains highly prevalent and abundant even in the 
G2 age group and then decreases in the subsequent G3 and G4 age groups, constituting 
one of the accessory taxa. These results suggested that these taxa persisted across the 
life span but exhibited dynamic interactions, shifting their prevalence over time. This 

TABLE 1 Mainly representative species that compose the human gut microbiota across the life spana

Prevalence >50% and relative average abundance >0.1% Relative average abundance

Taxonomy G1
(N = 3,100)

G2
(N = 366)

G3
(N = 2,632)

G4
(N = 555)

G1
(N = 3,100)

G2
(N = 366)

G3
(N = 2,632)

G4
(N = 555)

B. longum 69.71% 75.68% 36.17% 41.44% 9.03% 2.53% 0.55% 1.52%
E. coli 64.84% 43.44% 58.51% 54.77% 6.69% 0.87% 1.33% 2.26%
Bacteroides unknown_species 56.97% 96.72% 92.90% 88.47% 0.66% 1.23% 1.23% 1.19%
Clostridium unknown_species 56.84% 96.45% 96.12% 95.86% 0.48% 0.53% 0.60% 0.58%
Blautia unknown_species 53.42% 98.09% 98.52% 98.38% 0.58% 1.57% 2.08% 1.57%
B. uniformis 51.81% 94.54% 89.40% 88.29% 2.99% 4.10% 3.40% 4.10%
Ruminococcus unknown_species 50.58% 97.81% 97.26% 97.48% 0.45% 1.54% 1.68% 1.67%
Blautia wexlerae 48.39% 92.62% 87.42% 84.50% 1.82% 1.77% 1.68% 1.45%
Bifidobacterium unknown_species 46.87% 60.93% 31.08% 42.16% 0.58% 0.29% 0.11% 0.19%
Flavonifractor plautii 46.87% 83.33% 66.53% 78.38% 0.57% 0.37% 0.29% 0.40%
Phocaeicola vulgatus 42.06% 84.43% 72.49% 73.69% 1.31% 1.44% 1.15% 1.12%
Bacteroides thetaiotaomicron 40.90% 84.70% 72.72% 73.87% 0.82% 0.78% 0.59% 0.74%
Phocaeicola dorei 39.45% 80.60% 63.11% 66.13% 2.05% 1.51% 1.29% 1.37%
Eubacterium unknown_species 38.71% 94.54% 95.90% 95.86% 0.26% 0.99% 1.48% 1.29%
Parabacteroides distasonis 37.84% 82.51% 69.38% 77.48% 1.67% 1.15% 0.87% 1.07%
Enterocloster unknown_species 37.23% 87.98% 90.35% 89.55% 0.12% 0.16% 0.22% 0.21%
Roseburia unknown_species 36.74% 93.72% 95.59% 94.05% 0.22% 0.59% 1.14% 0.84%
Faecalibacterium unknown_species 36.65% 93.44% 96.01% 94.77% 1.17% 4.11% 3.23% 3.39%
Faecalibacterium prausnitzii 36.35% 92.62% 96.05% 93.69% 0.97% 3.41% 2.94% 3.12%
Bacteroides xylanisolvens 35.84% 79.78% 56.34% 64.68% 0.52% 0.63% 0.56% 0.55%
Phocaeicola unknown_species 35.68% 79.23% 79.71% 74.59% 0.21% 0.48% 0.65% 0.53%
Anaerostipes hadrus 34.35% 82.51% 63.87% 58.38% 1.11% 1.23% 1.09% 1.09%
B. fragilis 33.58% 43.44% 31.50% 37.48% 2.99% 1.25% 0.43% 0.78%
Coprococcus unknown_species 33.55% 87.43% 88.87% 86.31% 0.14% 0.48% 0.75% 0.58%
Agathobacter rectalis (formerly known as 

Eubacterium rectale)
31.29% 90.71% 92.86% 87.39% 0.99% 3.23% 4.11% 2.70%

Blautia massiliensis 31.03% 84.70% 75.68% 72.43% 0.41% 1.01% 0.77% 0.62%
Dorea unknown_species 30.77% 89.89% 89.02% 85.95% 0.12% 0.39% 0.58% 0.41%
Bacteroides ovatus 30.35% 68.58% 51.41% 51.53% 0.44% 0.33% 0.22% 0.23%
Roseburia intestinalis 30.06% 80.60% 84.38% 81.26% 0.74% 0.65% 1.01% 0.76%
aIn detail, only the bacterial species common to both the core and accessory microbiota across all age groups were reported. The bacterial taxa belonging to the core 
microbiota were highlighted in bold.
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dynamic co-existence could imply the formation of a complex ecosystem that could 
potentially reach a climax condition (23).

In addition, a dedicated correlation analysis was conducted to highlight the bacterial 
species significantly associated with aging. Based on Spearman’s rank correlation 
coefficient, the correlation analysis revealed a total of 104 taxa with a significant 
relationship with age (P < 0.01) (Table S5). Among these taxa, we focused on those 
that showed significantly higher relative abundance in at least one of the age groups 
(multiple comparison analyses Tukey’s (honestly significant difference) HSD P < 0.05, 
Fig. 2), resulting in a total of 45 taxa. Within this selection, we identified nine taxa 
with a negative correlation and 36 taxa with a positive correlation to age (Fig. 2). 
Notably, the nine taxa with a negative correlation were more abundant in the G1 group 
and were primarily represented by species belonging to the Bifidobacterium genus, 
such as Bifidobacterium breve, B. longum, Bifidobacterium bifidum, and Bifidobacterium 
pseudocatenulatum, along with species characteristic of the infant microbiota, such as 
Veillonella parvula, Ruminococcus gnavus, and E. coli (11, 12, 38). Notably, the increase of 
the correlation value showed a trend related to increasing age, except for the character
istic taxa of the G4 group, which corresponds to elderly individuals. These taxa, such 
as Ruthenibacterium lactatiformans, Anaerotruncus unknown_species, and Butyricicoccus 
unknown_species, exhibited a more heterogeneous distribution in terms of correlation 
values despite being more present in the G4 group, suggesting an increase in variability 
of the intestinal microbiota composition in this age group.

Exploring microbial functional diversity across the life span

The taxonomical analysis of the 6,653 healthy fecal samples across the life span revealed 
possible specific bacterial patterns correlated to the different age groups. In this context, 
in order to explore the genetic features characterizing each microbiome sample, we 
performed a screening of the microbially driven metabolic enzymatic reactions based on 
the MetaCyc database (49) and the Enzyme Commission (EC) classification. In detail, the 
enzymatic reactions that were revealed through the metagenomic analysis were used to 
perform a correlation analysis with the 104 bacterial species exhibiting a significant 
relationship with age (see above). Afterward, focusing on the core and accessory 
bacterial taxa that were statistically associated with each age group and on the main key 
enzymes involved in the metabolism of the various components of the human diet or in 
the metabolism of the main microbial metabolic products important for the host (see 
more detail in Materials and Methods), the correlation analysis seemed to highlight 
possible specific correlations between the age groups and the metabolic capability of 
the gut microbiome (Fig. 3). In detail, the functional analysis revealed a different 
correlation between the EC involved in the metabolism of carbohydrates and the 
bacterial species characterizing the four age groups, highlighting a greater similarity 
between groups G2, G3, and G4 compared with group G1 (Fig. 3). Curiously, EC 3.2.1.23, 
that is, beta-galactosidase, exhibited a significant positive correlation with G1 group 
compared with groups G2, G3, and G4. This result confirms the possible association 
between the composition of the intestinal microbiome and the host’s milk-based diet. 
Indeed, group G1, which is associated with infants, is likely influenced by a milk-based 
diet, where beta-galactosidase is essential for breaking down lactose, the prevalent 
carbohydrate source in milk (50). Similarly, the bacterial taxa representative of the G1 
group showed predominantly negative correlations with EC enzymes involved in fiber 
metabolisms. This result could probably be linked to the infant’s lowfiber diet (51), 
highlighting the possible relationship between microbiome-EC enzyme and the host’s 
diet.

Furthermore, the analysis of enzymes related to the biosynthesis of B vitamins also 
revealed a specific correlation between microbiome composition and human life span. 
Notably, the G1 group showed a positive correlation with enzymes involved in thiamine, 
i.e., 2.7.1.89, 2.7.1.50, and 3.6.1.27, and niacin, i.e., 2.7.1.23 and 6.3.5.1, biosynthesis in 
contrast to the G2, G3, and G4 groups. This observation highlighted the importance and 
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FIG 2 Correlation analysis between the bacterial species and the age of the individuals included in pooled analysis. In detail, only the bacterial taxa that showed 

a significant Spearman’s rank correlation coefficient and significantly higher relative abundance in at least one of the age groups calculated through ANOVA test 

analysis and multiple comparison analyses Tukey’s HSD test were reported.
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FIG 3 Correlation analysis between the bacterial species and enzymatic reaction identified in pooled analysis. The red color indicated negative correlations, 

while the green color represented positive correlations. Only the main key enzymes involved in the human diet resulted in statistical significance; Spearman’s 

rank correlation coefficient were reported.
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specificity of microbial groups characterizing the G1 group, such as B. breve, B. longum, B. 
bifidum, V. parvula, and E. coli, which could contribute to the biosynthesis of these 
vitamins impacting the physiological development of the host.

Investigation of the possible impact of geographical origin on the human 
microbiome across the host life span

In order to identify potential variations in the human gut microbiota based on geo
graphical origin, in particular with continent of origin, we performed an exploratory 
and preliminary multivariable statistical analysis based on MaAsLin2 software using 
the most representative population, i.e., the European population, as a reference for 
each pairwise comparison (52) (see more detail in Materials and Methods). The analysis 
revealed marked and significant differences in the microbiota profiles (Table S6). In 
detail, individuals from South America and Africa showed more significant differences 
than those from Europe (Fig. 4), while samples from North America showed the fewest 
significant differences (Fig. 4). Notably, South America and Africa exhibited a similar 
taxonomical correlation trend, revealing a positive correlation with species belonging 
to Prevotella, Prevotellamassilia, and Treponema genera and a negative correlation 
with bacterial species belonging to the Phocaeicola, Bacteroides, and Alistipes genera. 
Curiously, these trend correlations appeared consistent across different age groups, 
indicating a degree of temporal stability in the microbiota composition. Despite the 
absence of accurate details about the diet composition, it is tempting to hypothesize 
that the identified microbial profiles could reflect the lifestyles of different individuals. 
In fact, individuals originating from Africa and South America, who tend to have a diet 
characterized more by local and traditional products and less influenced by globaliza
tion, seemed to show a microbiota more similar to non-urbanized populations character
ized by a high abundance of species belonging to the Prevotella and Treponema genera 
(53–56).

Conversely, multivariable analysis, based on the EC class composition of the key 
enzymes involved in the human diet (Fig. 4; Table S5), showed that the individuals from 
South America, Africa, and Asia possessed the highest number of negative correlations, 
i.e., 18, 11, and 11, respectively, compared with Europe, suggesting broader functional 
diversity or different ecological adaptations in the microbiome of these populations (53, 
57). Furthermore, the observed negative correlations remained consistent across 
different age groups, suggesting a stable pattern in microbiome functionality over time 
(Fig. 4). These results could corroborate the notion that lifestyle substantially influences 
the intestinal microbiota, which, in turn, can exert a variable impact on the host, 
generally maintaining stability in terms of composition and functionality throughout 
human life. These preliminary results need further investigation using more accurate 
metagenomic data sets with detailed metadata on lifestyle factors, such as diet composi
tion, use of drugs/antibiotics, and medical treatments. A deeper understanding of these 
aspects will enable us to better interpret lifestyle impact on the microbiome and its 
variation across different populations across the human life span.

DISCUSSION

The human intestinal microbiota is widely recognized to play a key role in human health, 
so it has been the focus of extensive scientific research. However, knowledge regarding 
the evolution of gut microbiota over an individual’s lifetime has been limited. In this 
context, we decided to perform an extensive pooled analysis based on public and new 
shotgun metagenomic data sets of the human gut microbiota throughout the human life 
span, elucidating the dynamic nature of this complex ecosystem. The pooled analysis, 
encompassing a total of 6,653 fecal samples, identified an increase in microbial diversity 
in early life, followed by relative stability during adolescence, highlighting the continu
ous interplay between the microbiome and the host aging. Moreover, the statistical 
power of this pooled analysis allowed the identification of a potential age-related core 
microbiota at the bacterial species level. In detail, the samples representing the early 
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FIG 4 Multivariate analysis through MaAsLin2 software based on bacterial species, age groups, and geographical origin. Significant positive correlations are 

reported in red, while significant negative correlations are reported in blue.
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stages of life showed the simplest core microbiota composition, mainly represented by B. 
longum and E. coli species. In contrast, adolescent and adult samples showed a more 
extensive and diversified core microbiota, supporting the hypothesis that the gut 
microbiota displays considerable changes in composition during the initial stages of 
development and then shifts to taxonomic stability with advancing age. Intriguingly, 
taxa, initially classified as accessories in the early stages of life, often become core 
components in subsequent stages. This transition could highlight a dynamic reorganiza
tion within the microbiota, characterized by shifting relative abundances rather than just 
the progressive acquisition and loss of taxa.

Moreover, the shotgun metagenomic approach allowed to investigate the functional 
capabilities of the gut microbiome. Specifically, the metagenomic analysis unveiled 
functional variations linked to age, particularly in the metabolism of carbohydrates 
and fibers, probably indicating a co-evolution of the microbiome and host influenced 
by dietary factors. Additionally, the functional analysis revealed possible associations 
with the biosynthesis of B vitamins and, in particular, with thiamine and niacin metabo
lisms during early life, suggesting a potential role of the microbiota in shaping human 
physiology, such as the functions of nervous and immune systems (58, 59).

Furthermore, an exploratory preliminary multivariable analysis investigated the 
relationship between the human gut microbiome and the geographical origin of the 
individual. The analysis revealed possible differences in microbiota profiles between 
continents. In detail, the gut microbiomes from South America and Africa showed 
distinct microbial compositions compared with other continents, probably related to 
more traditional diets that are less influenced by globalization. These trends persisted 
across age groups, indicating temporal microbiota stability. Similarly, the analysis of 
specific EC classes suggested a possible functional diversity related to geographical 
origin.

Such findings highlighted the co-evolution of the gut microbiota with the host 
throughout the human life span, revealing a bacterial adaptation to the host’s habits 
and its potential influence on host physiology. Nevertheless, the uneven distribution of 
samples across different groups of age and the lack of detailed metadata concerning, 
among others, diet composition and lifestyle could represent possible limitations of this 
study that should be overcome through more complex metagenomic analyses, allowing 
a more comprehensive understanding of the intricate interplay between gut microbiota 
and human health across the life span. Furthermore, while the current approaches 
based on genomic databases used for classifying bacterial populations often lack precise 
species-level identification, they remain a critical tool for microbial analysis. However, 
the ongoing expansion and enhancement of these genomic databases are expected to 
significantly improve the accuracy of microbial species identification of the human gut 
microbiota. Such advancements are crucial for deepening the understanding of the gut 
microbiota’s role in human health across various life stages. Despite these limitations, our 
study’s approach is considered effective for obtaining a comprehensive bacterial profile, 
particularly compared to other methods based on marker genes (42, 60).

MATERIALS AND METHODS

Selection and collection of samples included in the pooled analysis

In this pooled analysis-based study, we retrieved 79 publicly available data sets from 
studies regarding the human gut microbiome for a total of 6,186 samples from 37 
different nations (Table S1). In particular, we selected shotgun metagenomic data sets 
obtained by an Illumina sequencing platform to avoid the input data’s variability as 
much as possible. In addition, we included 467 Italian adult healthy individuals collected 
as part of the Parma Microbiota project (Comitato Etico dell'Area Vasta Emilia Nord, 
Emilia-Romagna Region, Italy, under the ID 1107/2020/TESS/UNIPR) (Table S1). These 
Italian fecal samples, once collected, were immediately inactivated with DNA/RNA 
shield buffer (Zymo Research, USA) and subsequently delivered to the Laboratory of 
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Probiogenomics of Parma University, where the analysis of bacterial DNA libraries by 
shotgun metagenomic and the bioinformatic analysis of raw sequencing data were 
performed.

Shallow shotgun sequencing

According to the manufacturer’s instructions, DNA library preparation was performed 
using the Nextera XT DNA Sample Preparation Kit (Illumina, San Diego, CA, USA). First, 
1-ng input DNA from each sample was used for the library preparation, which underwent 
fragmentation, adapter ligation, and amplification. Then, Illumina libraries were pooled 
equimolarly, denatured, and diluted to a concentration of 1.5 pM. Next, DNA sequencing 
was performed on a MiSeq instrument (Illumina) using a 2 ×  250-bp Output Sequencing 
Kit together with a deliberate spike-in of 1% PhiX control library.

Taxonomic classification of sequence reads

Taxonomic profiling of sequenced and downloaded reads was performed employing the 
METAnnotatorX2 bioinformatic platform (42, 61). In detail, the fastq files were filtered 
to remove reads with the quality of <25 and to retain reads with a length of >100 bp. 
Subsequently, human host DNA filtering was performed through Bowtie 2 software (62, 
63), following the METAnnotatorX2 manual (42). Afterward, the taxonomic classification 
of 100,000 reads was achieved by means of MegaBLAST (64) employing a manually 
curated and pre-processed database of genomes retrieved from the National Center for 
Biotechnology Information, following the METAnnotatorX2 manual (42).

Functional prediction

Functional profiling of the sequenced reads was performed with the METAnnotatorX2 
bioinformatic platform (42, 61). Functional classification of reads was performed to 
reveal metabolic pathways based on the MetaCyc database (release 24.1) (49) through 
RAPSearch2 software (65, 66).

Statistical analysis

ORIGIN 2021 (https://www.originlab.com/2021) and SPSS software (www.ibm.com/
software/it/analytics/spss/) were used to compute statistical analyses. In detail, pairwise 
Kruskal-Wallis test analyses tested differences in alpha diversity that is calculated 
through species richness and Shannon index. Moreover, the similarities between 
samples (beta-diversity) were calculated by the Bray-Curtis dissimilarity matrix based 
on species abundance, using the “vegdist” function (from vegan_2.5–7) on RStudio 
(http://www.rstudio.com/). The range of similarities is calculated between values 0 and 1. 
Beta-diversity was represented through PCoA using the function “ape” of the Rsuite 
package (67). Moreover, the available metadata and the various detected bacterial 
species were tested and plotted on the PCoA using the “envfit” and “plot” functions 
from vegan (version 2.5–7), respectively, through RStudios (http://www.rstudio.com/). 
PERMANOVA analyses were performed on RStudio using 999 permutations to estimate 
P values for population differences in PCoA analyses with adonis2 package (from 
vegan_2.5–7). Furthermore, a correlation analysis between the available metadata and 
the various detected bacterial species of all samples was performed through Spearman’s 
rank correlation coefficient using “rcorr” function (from Hmisc_4.6–0; https://CRAN.R-
project.org/package=Hmisc), and only significant statistical results were retained. The 
false discovery rate (FDR) correction based on Benjamini and Hochberg correction (68) 
and calculated using RStudio through “p.adjust” function (from base package stats) was 
applied to statistically significant results. In detail, correlation analysis was performed 
between metabolic reactions revealed through the metagenomic analysis and the 
104 bacterial species, which exhibited a significant relationship with the host’s age. 
Afterward, we focused our interest on the 46 bacterial taxa that showed significantly 
higher relative abundance in at least one of the age groups calculated through analysis 
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of variance (ANOVA) test analysis and multiple comparison analyses Tukey’s HSD test and 
on the main key enzymes involved in the metabolism of the various components of the 
infant and/or adult human diet, such as human milk oligosaccharides, carbohydrates, 
and fibers, or in the metabolism of the main microbial products important for the host, 
such as B vitamins and short-chain fatty acids.

Furthermore, multivariable statistical analysis based on MaAsLin2 software (52) was 
performed to identify potential variations in the human gut microbiota based on 
geographical origin. In detail, the multivariable analysis allowed to investigate the 
possible correlation between the human gut microbiome and the geographical origin 
of the host. We focused on the continent of origin to reinforce the statistical power 
of the analysis. The analysis based on MaAsLin2 software was performed separately 
for each age group, considering the continent of origin, the microbiota composition, 
and the EC composition of the key enzymes involved in the human diet (see above). 
Moreover, European individuals were selected as analysis references, primarily due to the 
higher average number of samples across each age group. Afterward, we focused on the 
attention on the taxa that exhibit significant statistical correlations across all age groups 
in at least one continent group.
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