Denoising Diffusion Probabilistic Models have shown an impressive generation quality although their long sampling chain leads to high computational costs. In this paper, we observe that a long sampling chain also leads to an error accumulation phenomenon, which is similar to the exposure bias problem in autoregressive text generation. Specifically, we note that there is a discrepancy between training and testing, since the former is conditioned on the ground truth samples, while the latter is conditioned on the previously generated results. To alleviate this problem, we propose a very simple but effective training regularization, consisting in perturbing the ground truth samples to simulate the inference time prediction errors. We empirically show that, without affecting the recall and precision, the proposed input perturbation leads to a significant improvement in the sample quality while reducing both the training and the inference times. For instance, on CelebA 64×64, we achieve a new state-of-the-art FID score of 1.27, while saving 37.5% of the training time. The code is available at https://github.com/forever208/DDPM-IP.
Input Perturbation Reduces Exposure Bias in Diffusion Models / Ning, M.; Sangineto, E.; Porrello, A.; Calderara, S.; Cucchiara, R.. - 202:(2023), pp. 26245-26265. (Intervento presentato al convegno 40th International Conference on Machine Learning, ICML 2023 tenutosi a usa nel 2023).
Input Perturbation Reduces Exposure Bias in Diffusion Models
Ning M.;Sangineto E.;Porrello A.;Calderara S.;Cucchiara R.
2023
Abstract
Denoising Diffusion Probabilistic Models have shown an impressive generation quality although their long sampling chain leads to high computational costs. In this paper, we observe that a long sampling chain also leads to an error accumulation phenomenon, which is similar to the exposure bias problem in autoregressive text generation. Specifically, we note that there is a discrepancy between training and testing, since the former is conditioned on the ground truth samples, while the latter is conditioned on the previously generated results. To alleviate this problem, we propose a very simple but effective training regularization, consisting in perturbing the ground truth samples to simulate the inference time prediction errors. We empirically show that, without affecting the recall and precision, the proposed input perturbation leads to a significant improvement in the sample quality while reducing both the training and the inference times. For instance, on CelebA 64×64, we achieve a new state-of-the-art FID score of 1.27, while saving 37.5% of the training time. The code is available at https://github.com/forever208/DDPM-IP.File | Dimensione | Formato | |
---|---|---|---|
2301.11706v3.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
9.79 MB
Formato
Adobe PDF
|
9.79 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris