The aim of the paper is to introduce a random elastic traffic equilibrium problem in a Hilbert space setting. The equilibrium condition is expressed by a random extension of the elastic Wardrop principle. Its characterization with a stochastic quasi -variational inequality is proved. Under suitable assumptions, the existence of a random equilibrium distribution is established. Furthermore, a numerical scheme to compute the random elastic traffic equilibrium distribution is presented. Finally a numerical example is discussed.

A random elastic traffic equilibrium problem via stochastic quasi-variational inequalities / Barbagallo, Annamaria; Guarino Lo Bianco, S.. - In: COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION. - ISSN 1007-5704. - 131:(2024), pp. 1-11. [10.1016/j.cnsns.2023.107798]

A random elastic traffic equilibrium problem via stochastic quasi-variational inequalities

Guarino Lo Bianco, S.
2024

Abstract

The aim of the paper is to introduce a random elastic traffic equilibrium problem in a Hilbert space setting. The equilibrium condition is expressed by a random extension of the elastic Wardrop principle. Its characterization with a stochastic quasi -variational inequality is proved. Under suitable assumptions, the existence of a random equilibrium distribution is established. Furthermore, a numerical scheme to compute the random elastic traffic equilibrium distribution is presented. Finally a numerical example is discussed.
2024
131
1
11
A random elastic traffic equilibrium problem via stochastic quasi-variational inequalities / Barbagallo, Annamaria; Guarino Lo Bianco, S.. - In: COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION. - ISSN 1007-5704. - 131:(2024), pp. 1-11. [10.1016/j.cnsns.2023.107798]
Barbagallo, Annamaria; Guarino Lo Bianco, S.
File in questo prodotto:
File Dimensione Formato  
BarGua_CNSNS_2024.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 565.06 kB
Formato Adobe PDF
565.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1340930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact