In this paper, 3D-2D-dimensional reduction for hyperelastic thin films modeled through energies with point-dependent growth, assuming that the sample is clamped on the lateral boundary, is performed in the framework of Gamma-convergence. Integral representation results, with a more regular Lagrangian related to the original energy density, are provided for the lower dimensional limiting energy, in different contexts.
Asymptotic analysis of thin structures with point-dependent energy growth / Eleuteri, Michela; Prinari, Francesca; Zappale, Elvira. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 34:8(2024), pp. 1401-1443. [10.1142/S0218202524500258]
Asymptotic analysis of thin structures with point-dependent energy growth
Michela Eleuteri;
2024
Abstract
In this paper, 3D-2D-dimensional reduction for hyperelastic thin films modeled through energies with point-dependent growth, assuming that the sample is clamped on the lateral boundary, is performed in the framework of Gamma-convergence. Integral representation results, with a more regular Lagrangian related to the original energy density, are provided for the lower dimensional limiting energy, in different contexts.File | Dimensione | Formato | |
---|---|---|---|
2305.08355.pdf
embargo fino al 18/04/2025
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
423.27 kB
Formato
Adobe PDF
|
423.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris