In this paper, 3D-2D-dimensional reduction for hyperelastic thin films modeled through energies with point-dependent growth, assuming that the sample is clamped on the lateral boundary, is performed in the framework of Gamma-convergence. Integral representation results, with a more regular Lagrangian related to the original energy density, are provided for the lower dimensional limiting energy, in different contexts.

Asymptotic analysis of thin structures with point-dependent energy growth / Eleuteri, Michela; Prinari, Francesca; Zappale, Elvira. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 34:8(2024), pp. 1401-1443. [10.1142/S0218202524500258]

Asymptotic analysis of thin structures with point-dependent energy growth

Michela Eleuteri;
2024

Abstract

In this paper, 3D-2D-dimensional reduction for hyperelastic thin films modeled through energies with point-dependent growth, assuming that the sample is clamped on the lateral boundary, is performed in the framework of Gamma-convergence. Integral representation results, with a more regular Lagrangian related to the original energy density, are provided for the lower dimensional limiting energy, in different contexts.
2024
34
8
1401
1443
Asymptotic analysis of thin structures with point-dependent energy growth / Eleuteri, Michela; Prinari, Francesca; Zappale, Elvira. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 34:8(2024), pp. 1401-1443. [10.1142/S0218202524500258]
Eleuteri, Michela; Prinari, Francesca; Zappale, Elvira
File in questo prodotto:
File Dimensione Formato  
2305.08355.pdf

embargo fino al 18/04/2025

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 423.27 kB
Formato Adobe PDF
423.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1336988
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact