The dynamic analysis of parametrically excited rotors is a research field of great interest and practical importance, since instability and resonant behavior can cause issues ranging from anomalous noise and wear to catastrophic failures. This study is focused on the effects of unbalance on a parametrically excited rotor operating in the asymptotically stable domain, a research topic which in the scientific literature has not been investigated. Rotor unbalance causes an additional harmonic load acting on flexural deflection, influencing the frequency response together with the parametric excitation, yielding additional combination external resonances. As a first insight into this problem, to study the effects of angular speed independently of variations of the natural frequencies, and to facilitate decoupling of the equations of motion, a simplified model of a distributed-parameter slender rotor is considered, consisting of a homogeneous Euler-Bernoulli beam with circular section, rotating at constant angular speed about its longitudinal axis on isotropic supports. It is affected by unbalance and loaded by an axial end thrust, assumed to have a harmonic time-dependent component. The steady-state response is studied after decoupling the equations of motion, reducing the problem to the analysis of a non-homogeneous single-degree-of-freedom damped Mathieu equation.
Dynamic analysis of parametrically excited stable rotors with unbalance / De Felice, Alessandro; Sorrentino, Silvio. - 6:(2024). (Intervento presentato al convegno International Mechanical Engineering Congress and Exposition IMECE2023 tenutosi a New Orleans, Louisiana, USA nel 29 ottobre - 2 novembre 2023) [10.1115/IMECE2023-112382].
Dynamic analysis of parametrically excited stable rotors with unbalance
De Felice, Alessandro;Sorrentino, Silvio
2024
Abstract
The dynamic analysis of parametrically excited rotors is a research field of great interest and practical importance, since instability and resonant behavior can cause issues ranging from anomalous noise and wear to catastrophic failures. This study is focused on the effects of unbalance on a parametrically excited rotor operating in the asymptotically stable domain, a research topic which in the scientific literature has not been investigated. Rotor unbalance causes an additional harmonic load acting on flexural deflection, influencing the frequency response together with the parametric excitation, yielding additional combination external resonances. As a first insight into this problem, to study the effects of angular speed independently of variations of the natural frequencies, and to facilitate decoupling of the equations of motion, a simplified model of a distributed-parameter slender rotor is considered, consisting of a homogeneous Euler-Bernoulli beam with circular section, rotating at constant angular speed about its longitudinal axis on isotropic supports. It is affected by unbalance and loaded by an axial end thrust, assumed to have a harmonic time-dependent component. The steady-state response is studied after decoupling the equations of motion, reducing the problem to the analysis of a non-homogeneous single-degree-of-freedom damped Mathieu equation.File | Dimensione | Formato | |
---|---|---|---|
IMECE-2023.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
662.55 kB
Formato
Adobe PDF
|
662.55 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris