The effect of anharmonic corrections to the vibrational energies of extended systems is explored. Particular attention is paid to the thermodynamics of adsorption of small molecules on catalytically relevant systems typically affected by anharmonicity. The implemented scheme obtains one-dimensional anharmonic model potentials by distorting the equilibrium structure along the normal modes using both rectilinear (Cartesian) or curvilinear (internal) representations. Only in the latter case, the modes are decoupled also at higher order of the potential and the thermodynamic functions change in the expected directions. The method is applied to calculate ab initio enthalpies, entropies, and Gibbs free energies for the adsorption of methane in acidic chabazite (H-CHA) and on MgO(001) surface. The values obtained for the adsorption of methane in H-CHA (273.15 K, 0.1 MPa, θ = 0.5) are ΔH = -19.3, -TΔS = 11.9, and ΔG = -7.5 kJ/mol. For methane on the MgO(001) (47 K, 1.3 × 10-14 MPa, θ = 1) ΔH = -14.4, -TΔS = 16.6, and ΔG = 2.1 kJ/mol are obtained. The calculated desorption temperature is 44 K, and the desorption prefactor is 4.26 × 10 12 s-1. All calculated results agree within chemical accuracy limits with experimental data. © 2014 American Chemical Society.
Effect of anharmonicity on adsorption thermodynamics / Piccini, G.; Sauer, J.. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - 10:6(2014), pp. 2479-2487. [10.1021/ct500291x]
Effect of anharmonicity on adsorption thermodynamics
Piccini G.;
2014
Abstract
The effect of anharmonic corrections to the vibrational energies of extended systems is explored. Particular attention is paid to the thermodynamics of adsorption of small molecules on catalytically relevant systems typically affected by anharmonicity. The implemented scheme obtains one-dimensional anharmonic model potentials by distorting the equilibrium structure along the normal modes using both rectilinear (Cartesian) or curvilinear (internal) representations. Only in the latter case, the modes are decoupled also at higher order of the potential and the thermodynamic functions change in the expected directions. The method is applied to calculate ab initio enthalpies, entropies, and Gibbs free energies for the adsorption of methane in acidic chabazite (H-CHA) and on MgO(001) surface. The values obtained for the adsorption of methane in H-CHA (273.15 K, 0.1 MPa, θ = 0.5) are ΔH = -19.3, -TΔS = 11.9, and ΔG = -7.5 kJ/mol. For methane on the MgO(001) (47 K, 1.3 × 10-14 MPa, θ = 1) ΔH = -14.4, -TΔS = 16.6, and ΔG = 2.1 kJ/mol are obtained. The calculated desorption temperature is 44 K, and the desorption prefactor is 4.26 × 10 12 s-1. All calculated results agree within chemical accuracy limits with experimental data. © 2014 American Chemical Society.File | Dimensione | Formato | |
---|---|---|---|
piccini-sauer-2014-effect-of-anharmonicity-on-adsorption-thermodynamics.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris