The effect of anharmonic corrections to the vibrational energies of extended systems is explored. Particular attention is paid to the thermodynamics of adsorption of small molecules on catalytically relevant systems typically affected by anharmonicity. The implemented scheme obtains one-dimensional anharmonic model potentials by distorting the equilibrium structure along the normal modes using both rectilinear (Cartesian) or curvilinear (internal) representations. Only in the latter case, the modes are decoupled also at higher order of the potential and the thermodynamic functions change in the expected directions. The method is applied to calculate ab initio enthalpies, entropies, and Gibbs free energies for the adsorption of methane in acidic chabazite (H-CHA) and on MgO(001) surface. The values obtained for the adsorption of methane in H-CHA (273.15 K, 0.1 MPa, θ = 0.5) are ΔH = -19.3, -TΔS = 11.9, and ΔG = -7.5 kJ/mol. For methane on the MgO(001) (47 K, 1.3 × 10-14 MPa, θ = 1) ΔH = -14.4, -TΔS = 16.6, and ΔG = 2.1 kJ/mol are obtained. The calculated desorption temperature is 44 K, and the desorption prefactor is 4.26 × 10 12 s-1. All calculated results agree within chemical accuracy limits with experimental data. © 2014 American Chemical Society.

Effect of anharmonicity on adsorption thermodynamics / Piccini, G.; Sauer, J.. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - 10:6(2014), pp. 2479-2487. [10.1021/ct500291x]

Effect of anharmonicity on adsorption thermodynamics

Piccini G.;
2014

Abstract

The effect of anharmonic corrections to the vibrational energies of extended systems is explored. Particular attention is paid to the thermodynamics of adsorption of small molecules on catalytically relevant systems typically affected by anharmonicity. The implemented scheme obtains one-dimensional anharmonic model potentials by distorting the equilibrium structure along the normal modes using both rectilinear (Cartesian) or curvilinear (internal) representations. Only in the latter case, the modes are decoupled also at higher order of the potential and the thermodynamic functions change in the expected directions. The method is applied to calculate ab initio enthalpies, entropies, and Gibbs free energies for the adsorption of methane in acidic chabazite (H-CHA) and on MgO(001) surface. The values obtained for the adsorption of methane in H-CHA (273.15 K, 0.1 MPa, θ = 0.5) are ΔH = -19.3, -TΔS = 11.9, and ΔG = -7.5 kJ/mol. For methane on the MgO(001) (47 K, 1.3 × 10-14 MPa, θ = 1) ΔH = -14.4, -TΔS = 16.6, and ΔG = 2.1 kJ/mol are obtained. The calculated desorption temperature is 44 K, and the desorption prefactor is 4.26 × 10 12 s-1. All calculated results agree within chemical accuracy limits with experimental data. © 2014 American Chemical Society.
2014
10
6
2479
2487
Effect of anharmonicity on adsorption thermodynamics / Piccini, G.; Sauer, J.. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - 10:6(2014), pp. 2479-2487. [10.1021/ct500291x]
Piccini, G.; Sauer, J.
File in questo prodotto:
File Dimensione Formato  
piccini-sauer-2014-effect-of-anharmonicity-on-adsorption-thermodynamics.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1330709
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 94
  • ???jsp.display-item.citation.isi??? 94
social impact