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ABSTRACT: The effect of anharmonic corrections to the
vibrational energies of extended systems is explored. Particular
attention is paid to the thermodynamics of adsorption of small
molecules on catalytically relevant systems typically affected by
anharmonicity. The implemented scheme obtains one-dimen-
sional anharmonic model potentials by distorting the
equilibrium structure along the normal modes using both
rectilinear (Cartesian) or curvilinear (internal) representations.
Only in the latter case, the modes are decoupled also at higher
order of the potential and the thermodynamic functions
change in the expected directions. The method is applied to
calculate ab initio enthalpies, entropies, and Gibbs free energies
for the adsorption of methane in acidic chabazite (H−CHA) and on MgO(001) surface. The values obtained for the adsorption
of methane in H−CHA (273.15 K, 0.1 MPa, θ = 0.5) are ΔH = −19.3, −TΔS = 11.9, and ΔG = −7.5 kJ/mol. For methane on
the MgO(001) (47 K, 1.3 × 10−14 MPa, θ = 1) ΔH = −14.4, −TΔS = 16.6, and ΔG = 2.1 kJ/mol are obtained. The calculated
desorption temperature is 44 K, and the desorption prefactor is 4.26 × 1012 s−1. All calculated results agree within chemical
accuracy limits with experimental data.

■ INTRODUCTION

Substantial progress has been made in the ab initio calculation
of reaction energies and energy barriers for large chemical
systems such as enzymes,1 zeolite catalysts,2−6 or metal−
organic frameworks7,8 with chemical accuracy. Such calculations
combine high level quantum chemical calculations for the
reaction site with low level calculations of the periodic
structure, either using force fields1 or density functional theory
(DFT).2−4,9 Unfortunately, free energy differences (i.e.,
entropies) cannot be calculated with the same accuracy using
this approach.10 However, understanding the role of entropy in
adsorption processes is fundamental in catalysis and surface
science.11 The accurate ab initio calculation of such quantities
represents a major challenge in computational biochemistry12,13

and material science.14,15 Usually, reliable force fields are
available for biomolecular systems even for the reaction site
allowing an extensive use of sampling schemes such as umbrella
sampling16 or thermodynamic integration.17,18 Whereas many
of these force fields are available for biological systems
providing reliable descriptions of the potential energy surface
(PES), this is not the case for molecule−surface interactions,
especially if they involve active sites with a large periodic cell.
Therefore, the calculation of entropy contributions from
vibrational partition functions evaluated in the harmonic
approximation has become a standard tool in evaluating rate
constants for surface reactions3 and free energies of
adsorption.8,10,19−21

The harmonic oscillator model faces many limits especially
for the low frequency modes arising from molecule−surface
interactions and sof t vibrational modes of the crystals as

outlined in detail in a previous publication14 (see also ref 22,
section 10.5.2). To overcome these problems the authors
suggested a computational protocol14 which consists of an
accurate structural refinement using an optimization in normal
mode coordinates23,24 followed by an accurate calculation of
the harmonic frequencies including anharmonic corrections.25

The present work deals with anharmonic corrections to the
thermodynamic functions with particular attention to the
derivation of the anharmonic model potential. As pointed out
by Njegic and Gordon26 the main reason for the failure of
anharmonic corrections using the vibrational self-consistent
field approach arises from the way the PES is sampled. The
present approach takes only diagonal anharmonicity into
account, i.e., to get the model potential the PES is sampled
along the normal modes of vibration. In describing low
frequency/high amplitude motions, e.g., in weakly bound
systems,27,28 rectilinear normal mode displacements (linear
combinations of Cartesian coordinates) are not sufficient and
they result in an artificial large coupling of many vibrational
coordinates. Njegic and Gordon suggested to improve the
sampling of the PES by employing curvilinear normal mode
displacements defined using internal coordinates. They have
shown26 that this approach has a strong effect on the
thermodynamics of formation of some simple molecular
systems such as the water dimer or sulfuric acid.
In this work the sampling scheme in curvilinear normal mode

displacements is adapted to treat anharmonicity in extended
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systems in order to get entropy estimates with chemical
accuracy. The definition of internal coordinates for periodic
systems, i.e. including periodic images in the definition of the
topology, has been discussed in different works.29−31 The
present work uses the definition of periodic redundant internal
coordinates proposed by Bucko et al.31 due to its completeness
in defining intra and inter cell bonds.
The proposed protocol is applied to two relevant systems. In

the first case, molecular adsorption of methane in acidic
chabazite32 is a model system for catalysis and sorption in
microporous materials.32−38 An accurate prediction of the
adsorption energy and entropy for such a process is key to
understanding its underlying nature and, further on, to design
more efficient materials. The second case, molecular adsorption
of a monolayer (θ = 1) of methane on the MgO(001) surface,
is a prominent model system of surface science.39−45 It is
particularly interesting since almost the total adsorption energy
is due to dispersion, and the stability of the adsorption complex
is not only coming from molecule−surface interaction but also
from the lateral interaction of the molecules in the
monolayer.45 Due to the particular structure and interactions
of the molecules in the monolayer single molecular translational
and rotational contributions combine into collective hindered
translational and rotational motion of the whole layer making
this system particularly affected by anharmonicity. Theoretical
results can be compared with accurate experimental results
obtained by Tait et al.39

■ METHODS

In this section the concept of normal modes of vibration and
the variational approach adopted by the authors in the previous
work14 to calculate anharmonicity is recalled. Most of the
attention will be paid to the techniques for sampling the PES to
get accurate anharmonic model potentials.
Normal Modes of Vibration. For a generic molecular

system, the vibrational Hamiltonian can be written in harmonic
approximation as

Δ Δ Δ Δ= ̇ ̇ +H x x x H x
1
2

( M )T T
(1)

where Δx is the vector of the Cartesian atomic displacements
from the equilibrium position, M is the diagonal matrix of
atomic masses (Mij = δijmi), H is the energy Hessian, i.e., the
harmonic force constant, matrix. Index i goes from 1 to 3N
counting each Cartesian {x, y, z} degree of freedom per atom.
Introducing mass-weighted coordinates q = M1/2Δx, the
Hamiltonian transformes into

= ̇ ̇ +H q q q fq
1
2

( )T T
(2)

where f is the mass-weighted Hessian matrix. Normal mode
coordinates Q are defined as linear combination of mass-
weighted coordinates

=Q s qT
(3)

Imposing the orthogonality of the matrix s and defining a
similarity transformation of the Hessian

δ ω= = =Fs s s fs F1, , where ij ij i
T T 2

(4)

the Hamiltonian can be written in diagonal from

∑ ω= ̇ +
=

Q QH
1
2

( )
i

N

i i i
1

3
2 2

(5)

Thus, a linear transformation between Cartesian and normal
mode coordinates is defined

Δ = = =− −x M q M sQ SQ1/2 1/2
(6)

The resulting transformation matrix S is a matrix of
eigenvectors [v1, v2, ..., v3N] where each column corresponds
to the Cartesian coefficients of the linear combination for the
kth normal mode. Thus, it is possible to displace the atoms
along a specific normal mode independently.

Quantum Diagonal Anharmonicity. The aim is to solve
the Schrödinger equation variationally for all the normal modes
independently in a basis of harmonic functions with a sixth-
order model potential. The Hamiltonian for a generic kth mode
is

= − ℏ + + + +

+ + +

H
Q

a a Q a Q a Q

a Q a Q a Q

2
d

d k
k k k

k k k

2 2

2 0 1 2
2

3
3

4
4
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(7)

with Qk being the normal coordinate of the mode and ai (i = 0,
..., 6) as the polynomial fitting coefficients of the potential. The
Hamiltonian matrix elements

φ φ= ⟨ | | ⟩H Hmn m n (8)

are defined with the harmonic functions ϕm which are solutions
of the one-dimensional quantum harmonic oscillator

φ
ω
π

ω
=

! ℏ ℏ
ω− ℏ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
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e Q
1

2m m
k Q

m
k

k

1/4
/2 2k k

2

(9)

with m = 0, 1, ... and m being the mth order Hermite
polynomial. After application of Hermite polynomial rules to eq
8, the matrix elements can be derived analytically (see the
Supporting Information (SI)).
Diagonalization of the Hamiltonian matrix for a certain

number of harmonic basis functions yields the eigenvalues ϵi of
the energy states of the anharmonic oscillator. The quantum
anharmonic vibrational partition function is approximated as a
sum over the states

∑ ∑= ≈
=

∞
−ϵ

=

−ϵq e ea
i

k T

i

m
k T

0

/

0

/i iB B

(10)

Its convergence with respect of the number of states, given by
the number of harmonic oscillator functions (Δqa = qa

m − qa
m−1

< σ, where σ is a reasonably small number), is used as a
variational criterion. This condition is combined with the
convergence of the fundamental anharmonic frequency of the
oscillator Δνa = νa

m − νa
m−1 < δ, where νa = (ϵ1 − ϵ0)/h (h here

is the Planck’s constant). When converged, the energy states
are used to calculate internal energies and entropies from the
direct sum over states (see the SI).

Sampling of the PES. To get the model potential of eq 7
the PES has to be sampled along each normal mode. Having
the transformation of eq 6 the structure can be distorted along
the normal modes in Cartesian coordinates as previously
done:14,25

= ± P Qx x vdk k k
disp

0
disp

(11)
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The integer P runs from 1 to ngrid that is the number of
symmetric grid points used to sample the PES, dQk

disp is the
entity of the displacement defined as dQk

disp = 4/2πωk
1/22ngrid

which ensures that the wave function decays to zero at the
furthest points (classical turning points of the harmonic
oscillator),46 and vk is the eigenvector of the kth mode and
x0 is the equilibrium structure. However, as reported in detail
by Njegic and Gordon,26,46 normal mode distortions in
Cartesian coordinates are rectilinear by definition; therefore
they do not preserve any internal coordinate. Thus, the
diagonal potential does not directly correspond to a stretch,
bend, or torsion but rather to a mixture of all these internal
coordinates. For high frequency vibrations which have low
vibrational amplitudes linear (Cartesian) displacements are still
a good approximation for a correct sampling of the PES.
However, for low frequency/high amplitude vibrations linear
displacements result in an artificial coupling of all vibrations
therefore the sampling does not catch the correct PES. Since
stretching modes are linear by construction they are in general
not affected by such problems whereas bends and torsion are
linear for infinitesimal displacements only.47,48 This work
follows Boatz and Gordon49 in defining a Wilson trans-
formation of the normal modes in internal coordinates. The
well-known B-matrix47 gives the relationship between Cartesian
displacement coordinates and internal coordinates

Δ Δ= =
∂
∂

B
R
x

R B x where i j
i

j
,

(12)

Simple internal coordinates are defined as stretching, bends and
torsions and the dimension of their space can vary from 3N −
6, 3N − 5, or 3N − 3 for a nonlinear, linear, and periodic
system, respectively (nonredundant set) up to a specific
number Ω (redundant set). The use of the latter set is critical
for a proper description of the vibrational modes as also
suggested by Boatz and Gordon49 and others.50−55 Independ-
ently of the choice of the internal coordinates the Cartesian
Hessian matrix can be transformed into internals as

Φ Φ= =− −B H B H B B( ) ( ) and vice versa1 T 1 T
(13)

where Φ is the Hessian matrix in internal coordinates. From
the definition of the diagonal Hessian of eqs 4 and 6

= = −S HS F S M s, whereT 1/2 (14)

and substituting the Cartesian Hessian (eq 13) it follows that

Φ= Φ =F S B B S D D( )T T T
(15)

where the matrix

=D BS (16)

is the matrix of normal mode eigenvectors [γ1, γ2, ..., γ3N].
Column k refers to the kth mode and contains the linear
combination coefficient for the internal coordinates. Having
these eigenvectors the Cartesian equilibrium geometry can be
distorted along each normal mode by a displacement σ = P
dQk

dispγk

σ= ± −x x B( )k k
disp

0
1 T

(17)

Since by construction internal coordinates are nonlinear
(curvilinear), the above equation must be solved iteratively as
is well-documented in the literature.48,56−58 From the new
Cartesian coordinates of eq 17 a new set of internal coordinates
is calculated as ΔRn = σk − (Rn − R0) where n is the iteration

counter. The quantity ΔRn represent the difference between
the desired displacement in internal coordinates σk and the
actual one during the iterative back-transformation. The latter is
then used to calculate a new Cartesian geometry xk,n+1

disp = xk,n
disp +

(B−1)TΔRn. The iteration is looped until (B−1)TΔRn < 10−6 or
if n > 25. In some cases, the iteration might diverge during the
refinement, therefore if ΔRn > ΔR1 the procedure is stopped
and Cartesian geometry is reverted to the first estimate x1

disp.
While in general such a procedure is acceptable in structure
optimizations, it might be source of severe accuracy problems
when trying to sample the PES. A proper choice of the internal
coordinates has proven to be essential to ensure convergence of
the transformation.
A last remark must be spent on the definition of the inverse

of the B-matrix. Since in general the B-matrix is rectangular no
direct inverse matrix can be calculated. To calculate the inverse
several methods have been proposed.49,58,59 The derivation
employed in this work follows the indications of Boatz and
Gordon49 and Pulay and Fogarasi.59 The goal is to remove the
redundancies of B which are the linearly dependent rows of the
matrix. A squared G matrix (also know as the Wilson G-matrix)
is defined as

= −G BM B1 T (18)

where M−1 is the inverse of the atomic mass matrix defined
above. The eigenvalue equation of G

Λ=
⎛
⎝⎜

⎞
⎠⎟G K L K L

0
0 0

( ) ( )
(19)

has 3N − m (m = 6, 5, 3) nonzero eigenvalues associated with
the submatrix K and Ω − (3N − m) zero eigenvalues associated
with the submatrix L corresponding to the redundancies.
Therefore, the matrix is singular and cannot be inverted
directly. The generalized inverse of the matrix G is obtained
from eq 19 as

Λ=−
−⎛

⎝⎜
⎞
⎠⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G K L 0

0 0
K

L
( )1

1 T

T (20)

transforming it to diagonal form and inverting only the nonzero
eigenvalues. Therefore, taking the inverse of both sides of eq 18

=

=

− − −

− − −

G BM B

G B MB

( )

( )

1 1 T 1

1 1 T 1
(21)

the expression for the generalized inverse of the B-matrix is
obtained

=− − −B M B G1 1 T 1 (22)

When treating large systems with many redundancies the
calculation and subsequent inversion of G can be computa-
tionally demanding. Having this expression for the inverse B-
matrix it can be used in the procedure for the internal to
Cartesian coordinates back-iteration.

■ COMPUTATIONAL DETAILS
Calculation of harmonic frequencies in normal mode
coordinates and fit of the PES to a sixth order polynomial
was implemented in the program EIGEN_HESS_ANHAR-
M_INT. The program is a modified version of EIGEN_HES-
S_ANHARM.14 Both programs are written in F90 and interface
with VASP60 to get total energies and gradients from single

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500291x | J. Chem. Theory Comput. 2014, 10, 2479−24872481



point calculations. The calculation of the internal coordinates
and relative B-matrix are performed using the Python script
WriteBmatrix.py by Tomas Buck̆o which allows the variation of
the covalent and van der Waals radii to get different internal
coordinate sets. For all the systems described in this work each
plane wave DFT calculation has been performed using a 600 eV
energy cutoff requiring an energy difference between two
consecutive SCF cycles of 10−8 eV/cell. The PBE61 functional
has been employed and Grimme’s “D2” parameters62 are used
to include dispersion interactions.63 Thermodynamic properties
such as translational, rotational, harmonic, and anharmonic
energies and entropy contributions were obtained using the
local F90 program THERMO.
CH4 in H−CHA. The gas phase calculation of the methane

molecule has been performed putting it in a cubic cell of 15 Å ×
15 Å × 15 Å. The supercell of dimensions a = 18.90 Å, b = 9.44
Å, c = 9.29 Å, with α = 94.0051°, β = 94.8903°, γ = 95.3793° for
acidic chabazite contains two active sites (See Figure 1). This

has been obtained doubling the triclinic unit cell along the
lattice vector a. At half coverage (θ = 0.5), this ensures a
negligible lateral interaction between adsorbed molecules and
allows a Γ-point only calculations for a proper electronic
structure convergence. The Al/Si ratio for this zeolite is 1/11.
CH4 on MgO(001). The gas phase calculation of the

methane molecule has been performed for an orthorhombic
supercell of 8.42 Å × 8.42 Å × 25.00 Å. To model the
adsorption of methane on the MgO(001) surface the “ROT”
structure40 has been adopted which was also considered by
Tosoni and Sauer.45 It consists of a slab of three layers of
magnesium oxide where at each side surface four methane
molecules are adsorbed (See Figure 2). Th surface is a 2a × 2a
supercell formed by three layers of MgO. The 2 × 2 double cell
is mandatory to accommodate the methane molecules in this
particular arrangement. The dimensions of the orthorhombic
unit cell are 8.42 Å × 8.42 Å × 25.00 Å. The size of the c lattice
parameter ensures enough vacuum to avoid artificial
interactions between the periodic images. The reciprocal
space has been sampled using a Monkhort−Pack grid64 of 2

× 2 × 1 k-points. To describe properly the dispersion
interactions for Mg2+ ions the Grimme parameters for Ne
have been used (c6 = 0.63 and R6 = 1.243).45 In ref 45, Tosoni
and Sauer have derived parameters for Mg2+ following the
Grimme protocol and obtained results that are very close to Ne
parameters,45 which did not come as a surprise because the
number of valence electrons is the same for both Mg2+ and Ne.

■ RESULTS AND DISCUSSION
CH4 in H−CHA. Figure 1 shows the cell of H−CHA loaded

with methane. The adsorption complex considered has been
preoptimized using the conjugate-gradient algorithm imple-
mented in VASP and subsequently refined using the normal-
mode optimization.14 The reference structure is the same as
described in ref 14. Starting from the Cartesian Hessian
obtained using the finite differences algorithm of VASP,
Cartesian eigenvectors (normal modes) have been derived.
The latter have been transformed into internal coordinates as
described in the Methods section. To get consistent results
anharmonic corrections have been applied to the vibrations of
the adsorption complex, the unloaded chabazite and the
methane molecule. Due to the particular sof t vibrational
structure of zeolites,65−68 large amplitude motions not only
occur for the molecule−active site vibrations but also for the
crystal framework modes. Therefore, the description of normal
modes in terms of internal coordinates is mandatory to sample
the PES correctly. For each vibrational mode, a new set of
accurate harmonic frequencies have been calculated using
distortions of the normal mode in internal coordinates. Eight
symmetric points are used and the Fornberg formulas69 are
applied. As previously,14 having this accurate sampling, the PES
can be fit to a 6th-order polynomial and used to calculate

Figure 1. H−CHA 2a supercell showing the adsorption complex of
the methane molecule at the acidic hydrogen in position O2 (oxygen
shared by two eight-membered rings and one four-membered). Color
key: yellowsilicon, redoxygen, bluealuminum, graycarbon,
and whitehydrogen.

Figure 2. Slab model for methane adsorption on MgO(100) surface
proposed by Tosoni and Sauer45 showing the double monolayer
structure on each side of the slab. Color key: greenmagnesium,
redoxygen, graycarbon, and whitehydrogen.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500291x | J. Chem. Theory Comput. 2014, 10, 2479−24872482



anharmonic frequencies for all modes and thermodynamic
functions.
To get an accurate estimate of the internal energy and

enthalpy, the energy at the minimum of the PES has been
obtained using the hybrid MP2:PBE + ΔCCSD(T) method
proposed by Tuma and Sauer,70,71 while ZPVE (zero point
vibrational energy) and thermal enthalpy contributions are
calculated using the vibrations for the PBE+D potential energy
surface. Table 1 shows the final energy estimate72 and compares

it with the PBE+D results and its PBE and dispersion
components. The hybrid MP2:PBE method which combines
MP2 cluster models with PBE+D for periodic models yields an
energy minimum structure, at which the effect of CCSD(T) is
evaluated on smaller cluster models. For details of the method,
see refs 45, 70, and 71, and for applications, see refs 2−4, 63,
and 73.
Table 2 shows the thermodynamic functions for the

adsorption of methane on acidic chabazite at standard

conditions (273.15 K, 0.1 MPa) for half coverage (θ = 0.5).
The method “Standard” refers to the results obtained using
VASP conjugate-gradient optimization and Cartesian harmonic
analysis. Comparison is made with the results obtained after
refining the structure with the normal mode optimizer and
calculating the vibrational partition function using harmonic
frequencies resulting from Cartesian distortions (Cart) or from
normal mode distortions (NM). In addition, results are
compared with anharmonic frequencies obtained from recti-
linear (anh-Cart) or from curvilinear distortions (anh-int).
Thermal contributions to the total energies are derived from
the translational, rotational, and vibrational (harmonic and
anharmonic) partition functions.

Figure 3 summarizes the results. The black solid line is the
experimental value extrapolated from calorimetric data for

ethane and propane adsorption on a sample of H−CHA (Al/Si
= 1/11),74 and the gray bar around it represents the chemical
accuracy “region” (XExp ± 1 kcal/mol ≈ XExp ± 4 kJ/mol). The
red full square is the MP2:PBE + ΔCCSD(T) adsorption
energy.
The results show that the anharmonic corrections affect the

thermodynamic functions significantly. Entropy is extremely
sensitive to such changes in the vibrational structure. There is a
large differences of almost 20 kJ/mol between the entropy term
calculated using anharmonic frequencies with internal coor-
dinate sampling (anh-int) and harmonic frequencies calculated
in different ways (standard, Cart, NM). This illustrates the
failure of the harmonic oscillator model in describing weak and
noncovalent bonding of the nuclei. This breakdown can be
explained by the specifics of the adsorption process. When the
adsorption complex forms, the molecule looses its translational
and rotational DOFs which are converted into vibrations. The
translations and the rotations in the gas phase give to the
system a higher entropy than resulting from the six molecule−
surface vibrations. Therefore, adsorption is generally accom-
panied by a relatively high entropy loss. Describing the
adsorption complex as a pure system of harmonic oscillators
(especially for molecular- and physisorption) is definitely a
rough approximation since the weak interactions of the
molecule with the active site are far from being well-represented
by a mass-spring model. The results is a fictitiously large
entropy loss becoming unreasonable when the temperature of
the system increases, i.e., when a strongly bound model for the
adsorption complex becomes unrealistic.

Table 1. Electronic Adsorption Energy for Adsorption of
Methane in H−CHA from MP2:PBE + ΔCCSD(T), PBE+D,
PBE, and Dispersion (D)a

methodb ΔEe
Tuma and Sauer72 hybrid MP2:PBE + ΔCCSD(T) −29.4

PBE+D −34.8
this work PBE//PBE+D −8.2

D//PBE+D −26.5
aAll in kilojoules per mole. b“//” stands for “at the structure of”.

Table 2. Zero Point Corrected Energies, ΔE0, Enthalpies,
ΔH, Entropy Terms, −TΔS, and Gibbs Free Energies, ΔG,
for Adsorption of Methane in H−CHA at Standard
Conditions (273.15 K, 0.1 MPa, θ = 0.5)a

harmonic anharmonic

standardb Cartc NMc
anh-
Cartc

anh-
intc

exp
(extrapol)d

ΔE0 −25.1 −25.4 −24.6 −25.4 −22.9
ΔH −24.0 −26.3 −25.1 −30.2 −19.3 −16.7
−TΔSe 34.7 29.34 30.2 39.9 11.9 12.9
ΔG 10.7 3.1 5.1 9.7 −7.5 −3.8
aAll in kilojoules per mole. bReference structure optimized using
VASP conjugate-gradients. cReference structure optimized using
normal mode coordinates. dExtrapolated from results for ethane and
propane on H−CHA (Al/Si = 1/11).74 e38.68 and 11.32 kJ/mol due
to loss of translational and rotational degrees of freedom, respectively.

Figure 3. Enthalpies, ΔH, entropy, −TΔS, and Gibbs free energies,
ΔG, for adsorption of methane in H−CHA at standard conditions
(273.15 K, 0.1 MPa, θ = 0.5); all in kilojoules per mole.
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Attention must be paid to the way the PES is sampled along
the normal modes and the consequences that this can have on
the thermodynamics.26 The enthalpy and entropy differences
between anh-int and anh-Cart are huge. The variational scheme
proposed uses one-dimensional model potentials from a
polynomial fit of the PES. As explained in the introduction,
for large amplitude modes, rectilinear distortions are not able to
preserve the internal coordinates of the system unless
infinitesimal steps are used. The result is a fictitious coupling
of all the modes. Therefore, the PES is not sampled along the
normal mode only but receives contributions also from other
coupled coordinates, and this results in a potential well that is
narrower than the starting harmonic one. This is the reason
why anharmonic contributions from rectilinear PES sampling
yield higher frequencies and, thus, lower vibrational entropies
of the adsorption complex. This is avoided when the normal
modes are expressed in curvilinear coordinates. The anhar-
monic corrections obtained this way go in the right direction
and are very close to the experimental values. The deviations
for the enthalpy, the entropy term −TΔS, and the Gibbs free
energy are with −2.6, −1.0, and −3.6 kJ/mol all within
chemical accuracy limits.
A final remark concerns the choice of the sets of internal

coordinates employed. In this work, simple internals are used to
describe covalent bonds such as bond stretches, angle bends,
and torsions, while for long-range interactions inverse power
coordinates proposed by Baker and Pulay57 are used. In most
cases even a redundant set of coordinates obtained from the
topology of the system using standard covalent and van der
Waals radii is not complete enough to describe specific
vibrational modes. It is possible then to scale the covalent and
van der Waals radii in order to include more internals able to
describe a specific motion. Unfortunately this procedure can
not be easily generalized and the user must pay attention in
selecting a proper set of internals for some specific modes. As
an empiric rule, it has been observed for this specific case that
hindered rotational modes are better described when the
covalent radius is expanded by 20−30%. This way more
bending and torsional coordinates are generated between the
active site and the molecule able to describe the particular kind
of motion. To describe more accurately hindered translational
modes the van der Waals radius is expanded by 80−100% or
more if needed. This partially ensures a proper motion of the
adsorption complex keeping spurious contributions from other
internal coordinates negligible. As mentioned, no general recipe
can be applied to such problems and some chemical intuition is
still needed to solve every specific case. Even for small
molecular cases, a proper set of internals has to be chosen
accurately case by case.27,28 It is clear then that for large systems
the control of the user is less, and many tests must be done in
order to get an appropriate set. For some modes, the problems
are pathological and anharmonicity cannot be meaningfully
treated. In these cases simple harmonic frequencies are taken,
but they are anyway a small minority in the whole set of
frequencies.
CH4 on MgO(001). Figure 2 shows the model unit cell for

the methane monolayer on MgO(001). The use of rectilinear
displacements is sufficient for sampling the PES of the normal
mode vibrations of the bare MgO model surface. Nevertheless,
particular attention must be paid to the choice of the set of
redundant internal coordinates for the adsorption complex. The
best choice proved to be a minimal set of valence type internal
coordinates (i.e., 0% of covalent radii expansion) wheras the

nonbonded type internal coordinates were determined
expanding the van der Waals radii by 300% of their original
values. This combination appeared to be the best compromise
to describe both high frequency (intramolecular and crystal)
modes and low frequency (intermolecular monolayer and
surface) modes.
Also for this system the electronic energy difference at the

minimum of the PES is taken from MP2:PBE+D + ΔCCSD(T)
calculations of Tosoni and Sauer (Table 14 of ref 45). In Table
3, the PBE+D energy and the hybrid MP2:PBE+D +

ΔCCSD(T) energy45 are reported. This latter value is used
for ΔE in this paper whereas all nuclear motion contributions
refer to the PBE+D potential energy surface.
Table 4 shows the thermodynamic functions related to the

adsorption of a monolayer (θ = 1) of methane on the

MgO(001) surface at desorption conditions (T = 47K, p = 1.3
× 10−14 MPa). The nomenclature is the same as for Table 2.
The standard column is not present since no minimum (all real
frequencies) was detected using standard optimization
methods, conjugate-gradients in this case. Therefore, all the
results reported refer to a minimum structure obtained by
normal mode reoptimization14 considering the whole set of
eigenvalues and eigenvectors obtained from the previous
harmonic analysis. The rational function optimization method
ensures a downhill direction of the step toward the local
minimum. Thermal contributions to the total energies are
derived from the translational, rotational and vibrational
(harmonic and anharmonic) partition functions.
The results are summarized in Figure 4. As for the former

case the black solid line is the experimental value39 and the gray
bar around it represents the chemical accuracy “region” around

Table 3. Electronic Adsorption Energy for Adsorption of
Methane on MgO(001) from MP2:PBE + ΔCCSD(T), PBE
+D, PBE, and Dispersion (D)a

methodb ΔEe
Tosoni and Sauer45 MP2:PBE+D + ΔCCSD(T) −13.3

PBE+D −14.7
this work PBE//PBE+D −1.3

D//PBE+D −13.4
aAll in kilojoules per mole (per molecule). b“//” stands for “at the
structure of”.

Table 4. Zero Point Corrected Energies, ΔE0, Enthalpies,
ΔH, Entropy Terms, −TΔS, and Gibbs Free Energies, ΔG,
for Adsorption of Methane on MgO(001) Surface at
Experimental Desorption Conditions (47 K, 1.3 × 10−14

MPa, θ = 1)a

harmonic anharmonic

Cartb NMb anh-Cartb anh-intb exp39

ΔE0 −9.7 −9.8 −12.5 −13.4
ΔH −10.7 −10.9 −13.7 −14.4 −12.2
−TΔSc 16.8 16.7 16.7 16.6 12.2d

ΔG 6.1 5.8 3.00 2.1 0.0d

aAll in kilojoules per mole (per molecule). bReference structure
optimized using normal mode coordinates. c16.52 and 0.92 kJ/mol
due to loss of translational and rotational degrees of freedom,
respectively. dAssuming that at desorption temperature ΔG = 0 and
TΔS = ΔH
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it. The red full square is the MP2:PBE+D + ΔCCSD(T)
adsorption energy.
As for methane in H−CHA, the results obtained using

anharmonic corrections with curvilinear displacements are in
better agreement with the experimental results. It is very
interesting that in this case it is the zero point vibrational
energy and enthalpy change that makes the difference between
the results for different methods, while the entropy term, due to
the low temperature and pressure of the system, is not varying
sensitively. The largest ZPV energy changes are associated with
the anharmonic results obtained with curvilinear displacements.
In this case the higher frequency modes make the largest
contributions since they are drastically reduced by anharmo-
nicity.
Since at low temperature and pressure, the energy changes

are not as large as for standard conditions, the capability of the
method can be better appreciated analyzing the variation of ΔG
with the temperature. The desorption temperature is defined as
ΔG(T) = 0. Figure 5 shows the Gibbs free energy calculated
using the different methods as a function of temperature. The
black solid vertical line indicates the experimental desorption
temperature (47 K).39 It separates the temperature range for
which the desorption is favored (gray region on its right) from
the adsorption range.
The result obtained with anharmonic corrections using

curvilinear displacements (44 K) shows very good agreement
with the experimental desorption temperature (47 K). The
Cartesian (Cart) and normal mode (NM) set of harmonic
frequencies yield results that are very similar the one obtained
by Tosoni and Sauer45 (see Table 5). Table 5 reports also the
desorption activation entropy barriers and prefactors. Here the
entropy barrier is calculated taking the difference between the
vibrational entropy of the adsorbed system and the vibrational

entropy of the same system for which the rigid perpendicular
vibrations of the eight adsorbed methane molecules have been
removed from the partition function45 (one vibration per
adsorbed CH4 molecule). The latter are considered as the
reaction coordinates in transition state theory when applied to
the desorption process. Having this activation barrier, the
prefactors are calculated as

ν = −Δ ‡k T
h

e S RB (1 / )
(23)

where kB is the Boltzmann constant, h is the Planck constant,
and R is the molar gas constant. The prefactors calculated in
this way are a common procedure in analyzing the temperature-
programmed desorption (TPD) spectra, and they arise from
the inversion of the Polanyi−Wigner equation for mono-
molecular desorption

α ν− = −N
T

N
d
d

e E RTa
a

/d
A

(24)

where Na is the number of adsorbed molecules, T is the
temperature which increases linearly with time t (T = T0 + αt),
and Ed

A is the Arrhenius desorption energy.
As for the desorption temperature, the “anh-int” results show

better agreement with the experimental data reported in ref 39.

■ CONCLUSIONS
The ab initio enthalpies, entropies, and free energies of
adsorption calculated from vibrational partition functions using
anharmonic corrections show agreement with the experimental
data within chemical accuracy limits (4 kJ/mol) if curvilinear

Figure 4. Enthalpies, ΔH, entropy, −TΔS, and Gibbs free energies,
ΔG, for adsorption of methane on MgO(001) surface at experimental
desorption conditions (47 K, 1.3 × 10−14 MPa, θ = 1); all in kilojoules
per mole (per molecule).

Figure 5. Variation of Gibbs free energy (kJ/mol) calculated using
different methods with respect to temperature.

Table 5. Desorption Temperatures (K), Tdes, Activation
Entropy Barriers (J/K mol), ΔS‡, and Decimal Logarithm of
the Prefactors (s−1), Log ν, for Adsorption of Methane on
MgO(001) Calculated Using Different Methods

method Tdes ΔS‡ Log ν

Tosoni and Sauer45 33 −1.77a 12.02a

harmonic Cart 29 −1.86 12.52
NM 30 −2.00 12.53

anharmonic Cart-disp 37 −2.10 12.59
int-disp 44 −3.95 12.63

exp39 47 13.10
aRecalculated from the vibrational data of ref 45.
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displacements along normal modes are used. The proper
sampling of the PES to get the one-dimensional anharmonic
model potential proved to be essential for an accurate
determination of thermodynamic functions. Simple harmonic
frequencies, even when estimated with high accuracy (e.g.,
displacing the structure along normal modes if numerical
derivatives are unavoidable), are not good enough to describe
nonbonded interactions. As expected, anharmonic corrections
enhance the vibrational entropy of the adsorption complex and,
thus, favor adsorption.
For methane adsorption on Brønsted sites in zeolite H−

CHA at standard conditions, anharmonicity changes the TΔS
term by as much as 18 kJ/mol, moving the equilibrium from
desorption (θ = 9 × 10−4) to adsorption (θ = 0.75). For
systems with very low desorption temperatures as methane on
MgO(001), anharmonicity is found to cause significant changes
on zero point vibrational energies and, thus, on the enthalpy as
it lowers the higher vibrational wavenumbers. Anharmonicity
effects change the adsorption energy at 0 K from 9.8 to 13.4 kJ/
mol, and the heat of adsorption at 47 K from 10.9 to 14.4 kJ/
mol. After inclusion of anharmonicity effects, the ab initio
Gibbs free energies for adsorption of methane in H−CHA and
methane on MgO(001) deviate by −3.6 and +2.1 kJ/mol,
respectively, from the experimental data, showing that ab intio
calculations yield Gibbs free energies within chemical accuracy
limits.
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