Solid state electrolytes represent an attractive alternative to liquid electrolytes for rechargeable batteries. However, the fabrication of batteries with ceramic materials requires high temperature that could be detrimental to their electrochemical performance. In this work, we show that it's possible to densify a garnet-type Li5La3Bi2O12 solid electrolyte at low temperature (600 °C) with respect to standard high sintering temperature (T > 1000 °C) used for zirconium-based Li7La3Zr2O12 doped garnet. Li5La3Bi2O12 showed a high conductivity (1.2 × 10−4 S cm−1) after hot pressing at 600 °C. The synthesis conditions have been optimized: at 700 °C we observed the presence of the LiLa2O3.5 phase as a consequence of LLBO metastability, and the formation mechanism has been described by density functional theory (DFT) and density functional perturbation theory (DFPT) calculations. Moreover, we have reported the application of small amounts of LLBO as a sintering aid (5-10%) in the densification of LLZTO. Our investigation successfully demonstrated that LLBO introduction positively affects the densification process and global performances of LLZTO garnet, allowing us to obtain an ionic conductivity higher than 10−4 S cm−1 after annealing at 600 °C.

Metastable properties of a garnet type Li5La3Bi2O12 solid electrolyte towards low temperature pressure driven densification / Campanella, D.; Krachkovskiy, S.; Bertoni, G.; Gazzadi, G. C.; Golozar, M.; Kaboli, S.; Savoie, S.; Girard, G.; Gheorghe Nita, A. C.; Okhotnikov, K.; Feng, Z.; Guerfi, A.; Vijh, A.; Gauvin, R.; Belanger, D.; Paolella, A.. - In: JOURNAL OF MATERIALS CHEMISTRY. A. - ISSN 2050-7488. - 11:1(2022), pp. 364-373. [10.1039/d2ta04259b]

Metastable properties of a garnet type Li5La3Bi2O12 solid electrolyte towards low temperature pressure driven densification

Gazzadi G. C.;Paolella A.
Conceptualization
2022

Abstract

Solid state electrolytes represent an attractive alternative to liquid electrolytes for rechargeable batteries. However, the fabrication of batteries with ceramic materials requires high temperature that could be detrimental to their electrochemical performance. In this work, we show that it's possible to densify a garnet-type Li5La3Bi2O12 solid electrolyte at low temperature (600 °C) with respect to standard high sintering temperature (T > 1000 °C) used for zirconium-based Li7La3Zr2O12 doped garnet. Li5La3Bi2O12 showed a high conductivity (1.2 × 10−4 S cm−1) after hot pressing at 600 °C. The synthesis conditions have been optimized: at 700 °C we observed the presence of the LiLa2O3.5 phase as a consequence of LLBO metastability, and the formation mechanism has been described by density functional theory (DFT) and density functional perturbation theory (DFPT) calculations. Moreover, we have reported the application of small amounts of LLBO as a sintering aid (5-10%) in the densification of LLZTO. Our investigation successfully demonstrated that LLBO introduction positively affects the densification process and global performances of LLZTO garnet, allowing us to obtain an ionic conductivity higher than 10−4 S cm−1 after annealing at 600 °C.
2022
11
1
364
373
Metastable properties of a garnet type Li5La3Bi2O12 solid electrolyte towards low temperature pressure driven densification / Campanella, D.; Krachkovskiy, S.; Bertoni, G.; Gazzadi, G. C.; Golozar, M.; Kaboli, S.; Savoie, S.; Girard, G.; Gheorghe Nita, A. C.; Okhotnikov, K.; Feng, Z.; Guerfi, A.; Vijh, A.; Gauvin, R.; Belanger, D.; Paolella, A.. - In: JOURNAL OF MATERIALS CHEMISTRY. A. - ISSN 2050-7488. - 11:1(2022), pp. 364-373. [10.1039/d2ta04259b]
Campanella, D.; Krachkovskiy, S.; Bertoni, G.; Gazzadi, G. C.; Golozar, M.; Kaboli, S.; Savoie, S.; Girard, G.; Gheorghe Nita, A. C.; Okhotnikov, K.; Feng, Z.; Guerfi, A.; Vijh, A.; Gauvin, R.; Belanger, D.; Paolella, A.
File in questo prodotto:
File Dimensione Formato  
d2ta04259b.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1328512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact