We perform a comparative study of various macroscopic transport models against multisubband Monte Carlo (MC) device simulations for decananometer MOSFETs in an ultrathin body double-gate realization. The transport parameters of the macroscopic models are taken from homogeneous subband MC simulations, thereby implicitly taking surface roughness and quantization effects into account. Our results demonstrate that the drift-diffusion (DD) model predicts accurate drain currents down to channel lengths of about 40 nm but fails to predict the transit frequency below 80 nm. The energy-transport (ET) model, on the other hand, gives good drain currents and transit frequencies down to 80 nm, whereas below 80 nm, the error rapidly increases. The six moments model follows the results of MC simulations down to 30 nm and outperforms the DD and the ET models.
Applicability of Macroscopic Transport Models to Decananometer MOSFETs / Vasicek, M; Cervenka, J; Esseni, David; Palestri, Pierpaolo; Grasser, P.. - In: IEEE TRANSACTIONS ON ELECTRON DEVICES. - ISSN 0018-9383. - 59:3(2012), pp. 639-646. [10.1109/TED.2011.2181177]
Applicability of Macroscopic Transport Models to Decananometer MOSFETs
ESSENI, David;PALESTRI, Pierpaolo;
2012
Abstract
We perform a comparative study of various macroscopic transport models against multisubband Monte Carlo (MC) device simulations for decananometer MOSFETs in an ultrathin body double-gate realization. The transport parameters of the macroscopic models are taken from homogeneous subband MC simulations, thereby implicitly taking surface roughness and quantization effects into account. Our results demonstrate that the drift-diffusion (DD) model predicts accurate drain currents down to channel lengths of about 40 nm but fails to predict the transit frequency below 80 nm. The energy-transport (ET) model, on the other hand, gives good drain currents and transit frequencies down to 80 nm, whereas below 80 nm, the error rapidly increases. The six moments model follows the results of MC simulations down to 30 nm and outperforms the DD and the ET models.File | Dimensione | Formato | |
---|---|---|---|
TEDvasicek.pdf
Accesso riservato
Dimensione
790.66 kB
Formato
Adobe PDF
|
790.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris