We consider the Lorentz force equation in the physically relevant case of a singular electric field E. Assuming that E and B are T-periodic in time and satisfy suitable further conditions, we prove the existence of infinitely many T-periodic solutions. The proof is based on a min-max principle of Lusternik-Schnirelmann type, in the framework of non-smooth critical point theory. Applications are given to the problem of the motion of a charged particle under the action of a Liénard-Wiechert potential and to the relativistic forced Kepler problem.

Infinitely many periodic solutions to a Lorentz force equation with singular electromagnetic potential / Boscaggin, A.; Dambrosio, W.; Papini, D.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 383:(2024), pp. 190-213. [10.1016/j.jde.2023.11.002]

Infinitely many periodic solutions to a Lorentz force equation with singular electromagnetic potential

Papini, D.
2024

Abstract

We consider the Lorentz force equation in the physically relevant case of a singular electric field E. Assuming that E and B are T-periodic in time and satisfy suitable further conditions, we prove the existence of infinitely many T-periodic solutions. The proof is based on a min-max principle of Lusternik-Schnirelmann type, in the framework of non-smooth critical point theory. Applications are given to the problem of the motion of a charged particle under the action of a Liénard-Wiechert potential and to the relativistic forced Kepler problem.
2024
383
190
213
Infinitely many periodic solutions to a Lorentz force equation with singular electromagnetic potential / Boscaggin, A.; Dambrosio, W.; Papini, D.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 383:(2024), pp. 190-213. [10.1016/j.jde.2023.11.002]
Boscaggin, A.; Dambrosio, W.; Papini, D.
File in questo prodotto:
File Dimensione Formato  
BosDamPap_JDE_2024.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 363.04 kB
Formato Adobe PDF
363.04 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1327352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact