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Abstract

We consider the Lorentz force equation

d

dt

(
mẋ√

1 − |ẋ|2/c2

)
= q (E(t, x) + ẋ × B(t, x)) , x ∈R3,

in the physically relevant case of a singular electric field E. Assuming that E and B are T -periodic in time 
and satisfy suitable further conditions, we prove the existence of infinitely many T -periodic solutions. The 
proof is based on a min-max principle of Lusternik-Schnirelmann type, in the framework of non-smooth 
critical point theory. Applications are given to the problem of the motion of a charged particle under the 
action of a Liénard-Wiechert potential and to the relativistic forced Kepler problem.
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1. Introduction

According to the principles of electrodynamics [17], the motion of a slowly accelerated 
charged particle under the influence of an electromagnetic field is ruled by the Lorentz force 
equation

d

dt

(
mẋ√

1 − |ẋ|2/c2

)
= q (E(t, x) + ẋ × B(t, x)) , x ∈R3, (1.1)

where m is the mass of the particle, q is its charge and c is the speed of light; moreover, the 
electric and magnetic fields E and B are provided by the potentials V and A via the usual 
relations

E(t, x) = −∇xV (t, x) − ∂tA(t, x), B(t, x) = curlxA(t, x). (1.2)

As well known (see, for instance, [13]) equation (1.1) is formally the Euler-Lagrange equation 
of the action functional

T∫
0

mc2

⎛
⎝1 −

√
1 − |ẋ(t)|2

c2

⎞
⎠ dt +

T∫
0

q (−V (t, x(t)) + A(t, x(t)) · ẋ(t)) dt.

In spite of this, and probably due to the lack of smoothness of the kinetic part of the above 
functional, a systematic investigation of equation (1.1) with the tools of critical point theory has 
been initiated only very recently. More precisely, in [3,4] a rigorous variational formulation in the 
space W 1,∞ is introduced, allowing for the use of non-smooth critical point theory in the version 
developed by Skulzkin [22], and, as a consequence, several existence and multiplicity results are 
given for solutions of equation (1.1) with either Dirichlet or periodic boundary conditions (see 
also [14,15] for the use of topological techniques). However, in both the papers the physically 
relevant case of singular electric and magnetic fields is not taken into account.

The aim of the present paper is to provide a contribution in this direction. To this end, we take 
advantage of a recent research [8] dealing with the equation

d

dt

(
mẋ√

1 − |ẋ|2/c2

)
= −∇xV (t, x), x ∈R2, (1.3)

which is a version of (1.1) in the plane with A ≡ 0 and q = 1. More precisely, in [8] equation (1.3)
with a singular potential V given by V (t, x) = −α/|x| − U(t, x) (with α > 0), is considered, 
namely

d

dt

(
mẋ√

1 − |ẋ|2/c2

)
= −α

x

|x|3 + ∇xU(t, x), x ∈R2. (1.4)

Let us point out that the motivation given in [8] for the above equation was not coming from 
electrodynamics, but rather from relativistic celestial mechanics: indeed, equation (1.4) is inter-
preted as a simple model, in special relativity, for the motion of a particle in a forced Kepler 
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potential (see, for instance, [2,9] as well as the references in [7]). Of course, however, this can be 
of interest also in the context of electromagnetism and, actually, this interpretation is even more 
natural, since a rigorous treatment of the theory of gravitation should require the framework of 
general relativity: we refer to [16, Problem 34.3] for an interesting discussion and comparison 
about Kepler and Coulomb problems from the relativistic point of view.

By using minimization and min-max arguments in the framework of non-smooth critical point 
theory, it is proved in [8] that, for any external perturbation U , non singular and T -periodic in 
time, equation (1.4) has infinitely many T -periodic solutions and, in particular, at least two T -
periodic solutions of winding number k around the origin, for any integer k �= 0. Of course, such 
a result deeply relies on the presence of the singularity x = 0 for the potential V , which produces 
a non-trivial topology for the domain of the action functional: the set of T -periodic paths winding 
k times around the origin is nothing but a connected component of the domain, and each of them 
(but the one with k = 0) carries at least two periodic solutions of (1.4). Let us emphasize the 
universal character of this result, meaning that no assumptions on U (besides its smoothness) are 
needed: this is ultimately a consequence of the fact that a periodic path x winding around the 
origin with bounded velocity (since |ẋ| < c) is a priori-bounded.

In this paper, we provide a sort of generalization of the result in [8] applying to the Lorentz 
force equation (1.1). More precisely, we assume q > 0 and we consider an electrostatic potential 
V < 0 defined in a set � of the form

� = {(t, x) ∈R×R3 : x �= rj (t), ∀ j = 1, . . . ,N}, (1.5)

where the functions r1, . . . , rN : R → R3 are T -periodic (for some T > 0), of class C1 with 
‖ṙi‖∞ < c and such that ri(t) �= rj (t) for every t ∈ [0, T ] and i �= j . Moreover, we assume that 
V has a Keplerian blow-up at the boundary of � (cf. assumption (V) in Section 3) and that the 
magnetic potential A satisfies the global condition

|A(t, x)| ≤ −κ ′

c
V (t, x), ∀ (t, x) ∈ �, (1.6)

for some κ ′ ∈ (0, 1). Under these conditions, if both A, V and their derivatives tend to zero at 
infinity, we prove that (1.1) has infinitely many T -periodic solutions (cf. Theorem 3.1).

Let us point out that the structure of the singularities of V , described via the set �, is modeled 
on the relevant case of Liénard-Wiechert potentials (cf. [17, §14.1] and Section 4), corresponding 
to the motion of a charged particle under the effect of N moving charged particles q1, . . . , qN . 
In this situation, the functions r1, . . . rN are the motions laws of the particles generating the 
potentials and V and A are given by

V (t, x) =
N∑

i=1

qi

4πε0

1

1 − ηi(ti , x) · βi(ti)

1

|x − ri(ti)| , βi(t) = ṙi (t)

c
, ηi(t, x) = x − ri(t)

|x − ri(t)| ,

and

A(t, x) =
N∑ βi(ti)

c

qi

4πε0

1

1 − ηi(ti , x) · βi(ti)

1

|x − ri(ti)| ,

i=1
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where ti = ti (t, x) is the so-called retarded time (see (4.2) in Section 4). In particular, let us notice 
that condition (1.6) is satisfied since ‖ṙi‖∞ < c, for every i = 1, . . . , N .

As a second application of our main result, going back to the relativistic celestial mechanics 
framework, we can prove the existence of infinitely many T -periodic solutions for the relativistic 
forced Kepler problem in the space

d

dt

(
mẋ√

1 − |ẋ|2/c2

)
= −α

x

|x|3 + ∇xU(t, x), x ∈ R3,

when U > 0 and U → 0 for |x| → +∞ together with its gradient (cf. Theorem 4.2 in Section 4). 
In particular, this provides a partial generalization of the result given in [8] for the planar case 
mentioned above.

For the proof of Theorem 3.1 we use a variational approach, combining arguments from both 
[3,4] and [8]. More precisely, we consider the functional I : W 1,∞

T → (−∞, +∞] defined as

I (x) =
T∫

0

mc2

⎛
⎝1 −

√
1 − |ẋ(t)|2

c2

⎞
⎠ dt +

T∫
0

q (−V (t, x(t)) + A(t, x(t)) · ẋ(t)) dt,

whenever x belongs to the subset 
 ⊂ W
1,∞
T of paths without collisions (that is, (t, x(t)) ∈ �

for every t ∈ [0, T ], where � is as in (1.5)) and ‖ẋ‖∞ ≤ c, and extended to +∞ otherwise. This 
functional satisfies the structural assumption of Skulzin non-smooth critical point theory and its 
critical points give rise to T -periodic solutions of equation (1.1); moreover, it is well-behaved 
near collisions, in the sense that if xn approaches the boundary of 
, then I (xn) → +∞. These 
properties can be proved by using arguments already developed in [3,4,8] and are collected in 
Lemma 3.4.

On the other hand, however, due to the three-dimensional setting, the approach of [8] based 
on the winding number cannot be used and a different strategy to achieve both existence and 
multiplicity has to be developed. In particular, inspired by classical results available in the setting 
of classical mechanics [1], we detect periodic solutions via a min-max principle of Lusternik-
Schnirelmann type. For this, two main issues have to be faced. On one hand, we prove that 
the functional I satisfies a weak form of the Palais-Smale condition at any level c > inf I = 0, 
cf. Lemma 3.5. On the other hand, we show that the proper domain of the action functional I
contains compact subsets of arbitrarily large category, allowing us to define the min-max levels

cj = inf
A∈Fj

sup
x∈A

I (x), j ∈N,

where Fj is the family of compact subsets of the domain of I having category at least j , cf. 
Lemma 3.6; moreover, cj > 0 for any j ≥ 3, cf. Lemma 3.7. Then, taking advantage of the gen-
eral min-max principle for non-smooth functionals proved in [8] (cf. Theorem 2.5 in Section 2), 
we can prove that for j ≥ 3 the number cj is a critical level for the action functional. This would 
ensure the existence of infinitely many periodic solutions to equation (1.1) provided a sequence 
of distinct critical levels cj exists, a fact which however seems hard to be established in general. 
Thus, adapting the arguments in the proof of [4, Th. 1] we prove that whenever two critical levels 
coincide, the corresponding critical level carries infinitely many critical points. From this, we 
deduce that the functional I has infinitely many critical points.
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To the best of our knowledge, a technique of this type seems to be completely new in a 
non-smooth setting and we think that the general Lusternik-Schnirelmann min-max principle we 
introduce can be of independent interested.

After the preprint of this paper was published on arXiv, two related investigations about the 
use of variational methods for the Lorentz force equation with a singular Coulombian potential 
appeared. The first one is the paper [5], where the existence of at least one periodic solution is 
proved using a non-smooth mountain pass theorem; the second one is the preprint [6], finding 
infinitely many periodic solutions via a Lusternik-Schnirelmann principle as in our paper. Differ-
ently from [5,6], we allow multiple singularities which are also moving and affect the magnetic 
field, too, as in the paradigmatic case of Liénard-Wiechert potentials.

The plan of the paper is the following. In Section 2, we describe the abstract variational 
setting and we provide the non-smooth min-max principle of Lusternik-Schnirelmann type (The-
orem 2.6). In Section 3 we state and prove our main result (Theorem 3.1). Finally, in Section 4
we provide the above mentioned applications: the motion of a charged particle under the influ-
ence of periodic Liénard-Wiechert potentials (Theorem 4.1) and the perturbed relativistic Kepler 
problem (Theorem 4.2).

2. An abstract result

In this section, we present a result on the existence of infinitely many critical points for non-
smooth functionals with singularities. More precisely, as in [8] we are concerned with functionals 
of the form described in the following assumption.

Assumption 2.1. I : X → (−∞, +∞] is a functional which can be decomposed as

I (x) = ψ(x) + �(x), ∀ x ∈ X,

where, denoting by Dψ = {x ∈ X : ψ(x) < +∞} and D� = {x ∈ X : �(x) < +∞},

1. D� is open in X and DI = Dψ ∩ D� �= ∅;
2. ψ : X → R ∪ {+∞} is convex and lower semi-continuous; moreover, ψ is continuous on 

any nonempty compact set A ⊂ X such that supA ψ is finite;
3. � : X → R ∪ {+∞} is locally Lipschitz continuous in D�, i.e. every x ∈ D� has a neigh-

borhood in which � is Lipschitz continuous;
4. for any sequence {xn} in DI such that dist(xn, ∂D�) → 0, it holds that I (xn) → +∞.

We now recall some basic definitions from [20, §3.2].

Definition 2.2. Let I : X → (−∞, +∞] satisfy Assumption 2.1.

1. A point x ∈ DI is a critical point of I if

�0(x; z − x) + ψ(z) − ψ(x) ≥ 0, ∀ z ∈ X,

where

�0(x;u) := lim sup
+

�(w + tu) − �(w)

t
.

w→x,t→0
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2. A Palais-Smale (abbreviated PS-) sequence for I at level c is a sequence {xn} in X such that 
I (xn) → c and

�0(xn; z − xn) + ψ(z) − ψ(xn) ≥ −εn‖z − xn‖, ∀n ∈N, z ∈ X, (2.1)

for some sequence εn → 0+.

Remark 2.3. The functional � in Section 3 is actually of class C1 in its domain D� and, thus,

�0(x;u) = d�(x)[u].
We decided to present this more abstract section in the setting of nonsmooth calculus since, on 
one hand, the assumption � ∈ C1(D�) does not really simplify the argument and, on the other, 
locally Lipschitz functionals immediately appear as soon as one considers some truncation of a 
C1 functional.

We also need to consider the following weak form of the Palais-Smale condition, as introduced 
in [3].

Definition 2.4. Let I : X → (−∞, +∞] satisfy Assumption 2.1 and assume that there exists 
a Banach space Y such that X ⊂ Y with continuous embedding. The functional I is said to 
satisfy the weak Palais-Smale condition at level c if for every PS-sequence {xn} in X such that 
I (xn) → c, there exist x ∈ X and a subsequence {xnk

} such that x is a critical point of I with 
I (x) = c and xnk

→ x in the Y -topology.

The existence of infinitely many critical points for a functional of the form I is obtained using 
a general non-smooth min-max principle, together with the Lusternik-Schnirelmann category. 
For the readers convenience, we recall here the definition and basic properties of the category 
(cf. [1]) and the min-max principle we use (established in [8] as a generalization of [18, Theo-
rem 3.1]).

Given M ⊂ X, the category of A ⊂ M relative to M , denoted by catX(A, M) is the least 
integer k, if it exists, such that

A ⊂ A1 ∪ . . . ∪ Ak,

where Ai ⊂ M is closed and contractible in M , for every i = 1, . . . , k. The category is infinite if 
such a least integer does not exist. The category satisfies the following properties, which will be 
used in many situations:

(P1) if A ⊂ B ⊂ M , then catX(A, M) ≤ catX(B, M);
(P2) if A ⊂ M ⊂ N , then catX(A, N) ≤ catX(A, M);
(P3) if A, B ⊂ M , then catX(A ∪ B, M) ≤ catX(A, M) + catX(B, M);
(P4) if A ⊂ M is closed and ϕ ∈ C(A, M) is a deformation (i.e. it is homotopic to the inclusion 

ιA : A → M), then catX(A, M) ≤ catX(ϕ(A), M).

Theorem 2.5. [8, Th. 2.4] Let I = ψ + � be a functional satisfying Assumption 2.1, let B be a 
closed set in X and F be a family of compact sets in X such that:
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(1) F is homotopy stable with extended boundary B , that is, for each A ∈F and each continu-
ous deformation η ∈ C0([0, 1] × X, X) such that

η(t, x) = x, ∀ (t, x) ∈ ({0} × X) ∪ ([0,1] × B), and η([0,1] × A) ⊂ D�,

one has that η({1} × A) ∈ F ;
(2) c := infA∈F supx∈A I (x) < +∞;
(3) there exists a closed set F in X such that

(A ∩ F) \ B �= ∅, ∀ A ∈F , and sup
B

I ≤ inf
F

I.

Then, for any sequence {An} in F such that limn→∞ supAn
I = c, there exists a PS-sequence 

{xn} ⊂ X at level c such that dist(xn, An) → 0. If moreover infF I = c, then also dist(xn, F) →
0.

We are now in a position to state our result. For every integer j ∈ N , let us define

Fj = {A ⊂ D� : A compact, catX(A,D�) ≥ j}. (2.2)

Moreover, let

cj = inf
A∈Fj

sup
x∈A

I (x), (2.3)

for every j ∈N such that Fj is not-empty. Then, we are able to prove the following result.

Theorem 2.6. Let I = ψ + � be a functional satisfying Assumption 2.1 and the weak Palais-
Smale condition at each level c > inf I . Moreover, let us assume that there exists j0 ∈ N such 
that

(i) Fj �= ∅, for every j ≥ j0
(ii) cj < +∞ for every j ≥ j0
(iii) cj0 > inf I .

Then, the functional I has infinitely many critical points. More precisely:

(a1) cj is a critical level of I , for every j ≥ j0
(a2) whenever cj1 = cj2 for some j2 > j1 ≥ j0, then the functional I has infinitely many critical 

points at level cj1 .

Proof. (a1) Let us fix j ≥ j0. We claim that the assumptions of Theorem 2.5 with B = ∅, F =
X and F = Fj are satisfied. Indeed, assumption (1) is a consequence of property (P4) of the 
category. Moreover, assumption (2) is guaranteed by (ii) and assumption (3) is trivially fulfilled 
since

(A ∩ F) \ B = A �= ∅, ∀ A ∈Fj ,
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and

B = ∅ =⇒ sup
B

I = −∞.

Hence, we can apply Theorem 2.5 to obtain the existence of a PS-sequence at the level cj ≥ cj0 >

inf I . Since I satisfies the weak Palais-Smale condition at levels greater than infI , we deduce 
that there exists a critical point at level cj .

(a2) The argument here follows closely the one in [4, Theorem 1], with three main changes. The 
first one is that our functional � is singular and locally Lipschitz continuous, instead of being 
even and in C1(X). The second is that we use the Lusternik-Schnirelmann category instead of 
the Krasnoselskii genus, a fact which is, however, linked to the first difference. Finally, we use 
item 2 in Assumption 2.1, which is weaker than the continuity of ψ on its proper domain Dψ

required in [4].
Concerning the weak PS-condition, we denote ‖ · ‖Y the norm in Y (see Definition 2.4) and 

we set BY (x, r) = {u ∈ X : ‖u − x‖Y < r} which is open in X also w.r.t. the stronger topology 
induced by ‖ · ‖.

By contradiction, let us assume that I has only n ∈ N critical points at level c := cj1 = cj2 , 
which we label x1, . . . , xn, and let r > 0 be such that the sets BY (xm,2r) are pairwise disjoint 
and contained in D� (the closure is taken w.r.t. the norm ‖ · ‖ of X, if not otherwise specified). 
We define

Nρ = BY (x1, ρ) ∪ · · · ∪ BY (xn,ρ), ∀ρ > 0,

and observe that, arguing by contradiction and using the weak PS-condition, there exists ε ∈
(0, r2) such that, for each x ∈ I−1([c − ε, c + ε]) \ Nr , there is ξx �= x such that

ψ(ξx) − ψ(x) + �0(x, ξx − x) < −√
ε‖ξx − x‖. (2.4)

Let A ∈Fj2 be chosen in such a way that

sup
A

I ≤ c + ε.

In particular, A ⊂ Dφ and supA I = maxA I since ψ is bounded on A and, thus, continuous in A
by Assumption 2.1. The set B = A \ N2r is compact in X and B ∈ Fj1 , since

j1 < j2 ≤ catX(A,D�) ≤ catX(B,D�) + catX

(
n⋃

m=1

BY (xm,2r),D�

)
= catX(B,D�) + 1

by (P3). As a consequence we have

c ≤ max
B

I ≤ max
A

I ≤ c + ε.

We apply Ekeland variational principle (see also [4, Lemma 1(iii)]), to the map � : Fj1 →
]−,∞ + ∞] such that �(A) = supA I , since Fj is complete w.r.t. the Hausdorff metric
1
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dH(A,B) = max{sup
a∈A

dist(a,B); sup
b∈B

dist(b,A)}

and � is lower semi-continuous w.r.t. the same metric. Then, we obtain C ∈ Fj1 such that

max
C

I ≤ max
B

I

dH(B,C) ≤ √
ε < r

sup
D

I ≥ max
C

I − √
ε dH(C,D), ∀ D ∈Fj1 .

(2.5)

In particular, C ∩ Nr = ∅ and the set S = {x ∈ C : c − ε ≤ I (x)} is contained in I−1([c − ε, c +
ε]) \ Nr and is compact in X.

Since the mapping

(x1, x2) �→ φ(ξx) − φ(x1) + �0(x2; ξx − x2) + √
ε‖ξx − x1‖

is upper semi-continuous in X × D� (by [10, Proposition 2.1.1]) and negative for x1 = x2 = x ∈
S by (2.4), for each x ∈ S there is a positive δx < ‖ξx − x‖ such that BX(x, δx) ⊂ D� and

φ(ξx) − φ(u) + �0(x + h; ξx − u) < −√
ε‖ξx − u‖, ∀ u ∈ BX(x, δx), h ∈ BX(0, δx).

Since S is compact, there exist y1, . . . , y� ∈ S such that S ⊂ B1 ∪ · · · ∪ B�, where Bk =
BX(yk, δyk

), 1 ≤ k ≤ �. We observe that ξyk
/∈ Bk , by construction, and, thus, we can fix some 

positive δ ≤ min{δC/2, δyk
, dist(ξyk

, Bk ∩ C) : 1 ≤ k ≤ �}, where δC := min{dist(x, ∂D�) : x ∈
c} > 0 since C ⊂ D� by (2.5).

Let us denote by η, ηk : C → [0, 1] (1 ≤ k ≤ �) continuous functions such that

η(x) =
{

1 if I (x) ≥ c

0 if I (x) ≤ c − ε
and ηk(x) =

⎧⎪⎨
⎪⎩

dist(x,C \ Bk)∑�
m=1 dist(x,C \ Bm)

if x ∈ Bk ∩ C

0 if x ∈ C \ Bk

so that 
∑�

k=1 ηk = 1 on S. Let us consider the function β : [0, 1] × C → X defined by

β(t, x) = βt (x) := x + tδη(x)

�∑
k=1

ηk(x)

‖ξyk
− x‖ (ξyk

− x)

=
[

1 − tδη(x)

�∑
k=1

ηk(x)

‖ξyk
− x‖

]
x + tδη(x)

�∑
k=1

ηk(x)

‖ξyk
− x‖ξyk

which is continuous and satisfies ‖βt(x) −x‖ ≤ δ < δC for all (t, x) ∈ [0, 1] ×C by construction. 
As a consequence β1 is a deformation of C in D� (observe that β0 is the identity on C) and 
D := β1(C) belongs to Fj by property (P4).
1
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From the estimate

tδη(x)

�∑
k=1

ηk(x)

‖ξyk
− x‖ ≤ δ

�∑
k=1

ηk(x)

dist(ξyk
,Bk ∩ C)

≤
�∑

k=1

ηk(x) ≤ 1,

we deduce that βt(x) is a convex combination of x, ξy1, . . . , ξy�
and, hence,

ψ(βt (x)) ≤
[

1 − tδη(x)

�∑
k=1

ηk(x)

‖ξyk
− x‖

]
ψ(x) + tδη(x)

�∑
k=1

ηk(x)

‖ξyk
− x‖ψ(ξyk

).

On the side of �, by Lebourg’s theorem [10, Theorem 2.3.7] for each x ∈ C there exists τ =
τ(x) ∈ (0, 1) and ζ ∈ ∂�(βτ (x)) such that �(β1(x)) − �(x) = 〈ζ, β1(x) − x〉, where ∂�(x) is 
the generalized gradient of � at x (see [10, §2.1]). Hence, we have

�(β1(x)) − �(x) ≤ �0(βτ (x);β1(x) − x) ≤ δη(x)

�∑
k=1

ηk(x)

‖ξyk
− x‖�0(βτ (x); ξyk

− x)

by [10, Propositions 2.1.1-2]. As a consequence we can estimate

I (β1(x)) ≤
[

1 − δη(x)

�∑
k=1

ηk(x)

‖ξyk
− x‖

]
ψ(x) + δη(x)

�∑
k=1

ηk(x)

‖ξyk
− x‖ψ(ξyk

)

+ �(x) + δη(x)

�∑
k=1

ηk(x)

‖ξyk
− x‖�0(βτ (x); ξyk

− x)

= I (x) + δη(x)

�∑
k=1

ηk(x)

‖ξyk
− x‖

[
ψ(ξyk

) − ψ(x) + �0(βτ (x); ξyk
− x)

]
.

Now, by construction, ‖βτ (x) − x‖ ≤ δ ≤ δyk
for all k = 1, . . . , �, which implies that

ψ(ξyk
) − ψ(x) + �0(βτ (x); ξyk

− x) < −√
ε‖ξyk

− x‖, ∀ x ∈ Bk, k = 1, . . . , �.

Therefore, we have

I (β1(x)) < I (x) − δη(x)
√

ε

�∑
k=1

ηk(x) < I (x) − δη(x)
√

ε, ∀ x ∈ S.

On the other hand, if x ∈ C \ S, we have η(x) = 0 and I (β1(x)) = I (x) < c − ε.
We can choose x0 ∈ C such that I (β1(x0)) = max I (β1(C)) = max I (D) ≥ c since D ∈ Fj1 . 

As consequences we have that x0 ∈ S and

c ≤ max
D

I = I (β1(x0)) < I (x0) − δη(x0)
√

ε ≤ I (x0),

and, thus, η(x0) = 1 and
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max
D

I < I (x0) − δ
√

ε ≤ max
C

I − δ
√

ε ≤ max
C

I − dH(C,D)
√

ε,

which is a contradiction with (2.5). �
3. The main result

In this section we state and prove our main result for the Lorentz force equation

d

dt

(
ẋ√

1 − |ẋ|2/c2

)
= E(t, x) + ẋ × B(t, x), x ∈R3, (3.1)

where, as usual,

E(t, x) = −∇xV (t, x) − ∂tA(t, x), B(t, x) = curlxA(t, x). (3.2)

Notice that, without loss of generality, we have normalized the charge-to-mass ratio to 1 (while, 
on the other hand, we prefer to keep track of the value c of the speed of light).

As already mentioned in the Introduction, our main interest is in covering the case when the 
potential V is singular. More precisely, we assume that the singularities of V are described by 
N functions r1, . . . , rN : R → R3 which are T -periodic (for some T > 0), of class C1, with 
‖ṙi‖∞ < c, and such that ri(t) �= rj (t) for every t ∈ [0, T ] and i �= j . Accordingly, we settle 
equation (3.1) on the open domain

� = {(t, x) ∈ R×R3 : x �= rj (t), ∀ j = 1, . . . ,N}.

The following result holds true.

Theorem 3.1. Let us assume that V : � →R and A : � →R3 are of class C1, T -periodic in the 
first variable, and satisfy the following conditions:

(V) V (t, x) < 0 for every (t, x) ∈ � and there exist κ > 0 and δ > 0 such that, for every i =
1, . . . , N ,

V (t, x) ≤ − κ

|x − ri(t)| , ∀ (t, x) ∈ � such that |x − ri(t)| < δ; (3.3)

(AV1) there exists κ ′ ∈ (0, 1) such that

|A(t, x)| ≤ −κ ′

c
V (t, x), ∀ (t, x) ∈ �;

(AV2) it holds that

lim|x|→∞ (|V (t, x)| + |∇xV (t, x) + ∂tA(t, x)| + |curlxA(t, x)|) = 0,

uniformly in t ∈R.
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Then, equation (3.1) has infinitely many T -periodic solutions.

Remark 3.2. Notice that the potential A can be either regular or singular: however, in this last 
case, the behavior of A near the singularities has to be consistent with assumption (AV1). Let us 
observe that the case A ≡ 0 is allowed.

Remark 3.3. Let us point out that assumption (AV2) can be replaced by

lim|x|→∞ (|V (t, x)| + |∇xV (t, x)| + |DxA(t, x)|) = 0,

uniformly in t ∈R. Indeed, the condition

lim|x|→∞ (|∇xV (t, x) + ∂tA(t, x)| + |curlxA(t, x)|) = 0, (3.4)

uniformly in t ∈ R, is used to prove the validity of the weak Palais-Smale condition (cf. the 
proof Lemma 3.5 and, in particular, formula (3.12), which in turn is obtained from (3.11) using 
the expression for d� given by (3.9)). When assuming, instead of (3.4), the condition

lim|x|→∞ (|∇xV (t, x)| + |DxA(t, x)|) = 0,

uniformly in t ∈ R, then the same conclusion can be obtained using (3.8) instead of (3.9) in 
formula (3.11). We prefer to suppose (AV2) because it can be verified in a more direct way in the 
application to Liénard-Wiechert potentials (cf. (4.11) and (4.12)).

The rest of the section is devoted to the proof of Theorem 3.1, which follows from the abstract 
result Theorem 2.6.

So, let us first describe the variational setting; in what follows, we take advantage of results 
given both in [3] (where, however, V and A are not allowed to be singular) and in [8] (where 
A = 0, but V is singular). Let us consider the Banach space

X =
{
x ∈ W 1,∞(0, T ;R3) : x(0) = x(T )

}
,

endowed with its usual norm ‖x‖ = ‖x‖∞ + ‖ẋ‖∞. We define the functional ψ : X →
(−∞, +∞] as

ψ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T∫
0

c2

⎛
⎝1 −

√
1 − |ẋ(t)|2

c2

⎞
⎠ dt if ‖ẋ‖∞ ≤ c;

+∞ otherwise.

According to the notation of Section 2, we thus have

Dψ = {x ∈ X : ‖ẋ‖∞ ≤ c}.
Moreover, we consider the open subset of X
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 = {x ∈ X : (t, x(t)) ∈ �, ∀ t ∈ [0, T ]}

and we define � : X → (−∞, +∞] as

�(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T∫
0

(−V (t, x(t)) + A(t, x(t)) · ẋ(t)) dt if x ∈ 
;

+∞ otherwise,

so that D� = 
. Finally, we define the action functional I : X → (−∞, +∞] as

I (x) = ψ(x) + �(x), ∀ x ∈ X,

and we recall the notation DI = Dψ ∩ D�.
For further convenience, we observe that assumption (AV1) implies that

−V (t, x(t)) + ẋ(t) · A(t, x(t)) ≥ (1 − κ ′) (−V (t, x(t))) , ∀ x ∈ DI , t ∈ [0, T ], (3.5)

and then, by assumption (V),

�(x) =
T∫

0

(−V (t, x(t)) + ẋ(t) · A(t, x(t))) dt > 0, ∀ x ∈ DI . (3.6)

Taking into account that ψ ≥ 0 and that I = +∞ outside DI , we deduce that

I (x) > 0, ∀ x ∈ X. (3.7)

In the next Lemma, we show that this functional satisfies the structural Assumption 2.1 of 
Section 2 and that, moreover, its critical points correspond to classical T -periodic solutions of 
the Lorentz force equation (3.1).

Lemma 3.4. The functional I satisfies Assumption 2.1 and the functional ψ is lower semicontin-
uous with respect to uniform convergence, namely: if x ∈ X and {xn} is a sequence in Dψ such 
that xn → x uniformly on [0, T ], then x ∈ Dψ and

ψ(x) ≤ lim inf
n→+∞ψ(xn).

Moreover, each critical point x ∈ DI of I satisfies |ẋ(t)| < c for every t ∈ [0, T ] and corresponds 
to a classical T -periodic solution of equation (3.1).

Proof. Most of the above statement has been already proved in [8, Proposition 3.2] (and, in 
turn, in corresponding results in [3]); notice indeed that the functional ψ is the same as the one 
considered therein, while �, despite the presence of the magnetic term, is still of class C1 on the 
open set D� = 
, with
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d�(x)[y] =
T∫

0

(
−∇xV (t, x(t)) · y(t) + A(t, x(t)) · ẏ(t) + ((DxA(t, x(t))T ẋ(t)) · y(t)

)
dt,

(3.8)
cf. [3, Lemma 1] (in the above formula, the term (DxA)T ẋ is meant as the product of the trans-
pose of the Jacobian matrix DxA with the (column) vector ẋ). Notice that, by integrating by 
parts,

T∫
0

A(t, x(t)) · ẏ(t) dt = −
T∫

0

∂tA(t, x(t)) · y(t) dt −
T∫

0

(DxA(t, x(t))ẋ(t)) · y(t) dt

From this, together with the identity

((DxA(t, x(t))T ẋ(t)) · y(t) − (DxA(t, x(t))ẋ(t)) · y(t) = (ẋ(t) × curlxA(t, x(t))) · y(t),

we can rewrite d� in the equivalent form

d�(x)[y] =
T∫

0

((−∇xV (t, x(t)) − ∂tA(t, x(t))) · y(t) + (ẋ(t) × curlxA(t, x(t))) · y(t)) dt.

(3.9)
Using this formula, and recalling (3.2), the fact that critical points of I give rise to classical 
T -periodic solutions of equation (3.1) can be proved with the very same arguments of [8, Propo-
sition 3.3] (see also [3, Theorem 2]).

The only point which requires a bit of care is the proof of the property of blow-up on the 
boundary (that is, item 4 of Assumption 2.1), for which we give the complete details. At first, we 
notice that

∂D� = X \ 
 = {x ∈ X : ∃ i ∈ {1, . . . ,N} ∃ t0 ∈ [0, T ] : x(t0) = ri(t0)}.

So, let us consider a sequence {xn} in DI such that dn := dist(xn, ∂D�) → 0 and, accordingly, 
let yn ∈ ∂D� be such that ‖xn − yn‖ ≤ 2dn. Since ‖ẋn‖∞ ≤ c for any n, we find that

‖ẏn‖∞ ≤ c + ‖ẏn − ẋn‖∞ ≤ c + ‖yn − xn‖ ≤ c + dn ≤ c + 1

for n large enough. Moreover, since yn(tn) = rin(tn) for some tn ∈ [0, T ] and in ∈ {1, . . . , N}, we 
have

‖yn − rin‖∞ ≤ (2c + 1)T

and thus the sequence {yn} is bounded in X. Since ‖xn−yn‖ ≤ 2dn, the sequence {xn} is bounded 
in X as well. Therefore, the Ascoli-Arzelà theorem yields the existence of a continuous function 
z such that, up to subsequence, xn → z and yn → z uniformly on [0, T ]. Hence, z(0) = z(T )

and z(t0) = ri0(t0) for some t0 ∈ [0, T ], limit point of the sequence tn, and i0 ∈ {1, . . . , N}, limit 
point of the sequence in. Moreover, passing to the limit in the Lipschitz-continuity condition
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|xn(t2) − xn(t1)| ≤ c|t2 − t1|, for every t1, t2 ∈ [0, T ],

we easily see that z ∈ Dψ ⊂ X. Hence, the function z − ri0 is Lipschitz continuous and so

T∫
0

1

|z(t) − ri0(t)|
dt = +∞.

Therefore, by (V) and (AV1) and using Fatou’s lemma we obtain

lim inf
n→+∞

T∫
0

(−V (t, xn(t)) + A(t, xn(t)) · ẋn(t)) dt ≥ lim inf
n→+∞

T∫
0

(−(1 − κ ′)V (t, xn(t))
)

dt

≥ (1 − κ ′)
T∫

0

lim inf
n→+∞ (−V (t, xn(t))) dt ≥ κ (1 − κ ′)

T∫
0

lim inf
n→+∞

1

|xn(t) − ri0(t)|
dt

= κ (1 − κ ′)
T∫

0

1

|z(t) − ri0(t)|
dt = +∞.

Since 0 ≤ ψ(xn) ≤ mc2T , we finally conclude that I (xn) → +∞ as desired. �
Let us now notice that

inf
X

I = 0.

Indeed, we have already observed that I > 0, cf. (3.7). Moreover, for a sequence xn(t) ≡ ξn

with |ξn| → +∞ we readily see, by assumption (AV2), that I (xn) = �(xn) → 0. With this in 
mind, the next result ensures that the functional I satisfies, at each level c > inf I = 0, the weak 
Palais-Smale condition, according to Definition 2.4 with Y = L∞(0, T ).

Lemma 3.5. The functional I satisfies the weak Palais-Smale condition at each level c > 0.

Proof. Let {xn} ⊂ X be a Palais-Smale sequence at level c > 0; incidentally, let us notice that 
{xn} ⊂ DI , since otherwise I (xn) = +∞. The proof will be divided in two steps.

At first, we show that the sequence {xn} is bounded in L∞ (and, thus, in X). To see this, let us 
write xn = x̃n + x̄n, where x̄n = 1

T

∫ T

0 xn and 
∫ T

0 x̃n dt = 0. Since ‖ ˙̃xn‖∞ = ‖ẋn‖∞ ≤ c, we have 
that ‖x̃n‖∞ is bounded. So, assuming by contradiction that ‖xn‖∞ is not bounded yields, up to 
subsequences, |x̄n| → +∞. Then |xn(t)| ≥ |x̄n| − ‖ ˙̃xn‖∞ and so

min
t

|xn(t)| → +∞. (3.10)

Choosing z = x̄n in (2.1), we obtain
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d�(xn)[−x̃n] + ψ(x̄n) − ψ(xn) ≥ −εn‖x̃n‖, ∀ n ∈N, (3.11)

that is, using (3.9),

ψ(xn) ≤ εn‖x̃n‖

+
T∫

0

((∇xV (t, x(t)) + ∂tA(t, xn(t))) · x̃n(t) + (ẋn(t) × curlxA(t, xn(t))) · x̃n(t)) dt.

(3.12)

Therefore, recalling the boundedness of ‖x̃n‖∞, (3.10) and assumption (AV2) we obtain 
ψ(xn) → 0. On the other hand, for the same reasons �(xn) → 0 and so

ψ(xn) = I (xn) − �(xn) → c > 0,

a contradiction.
As a second step, we show that the boundedness of {xn} implies the existence of a subsequence 

{xnk
} converging in L∞(0, T ) to a critical point x of the functional I at level c (that is, the 

condition required in the definition of weak Palais-Smale condition at level c). For this, we 
combine the arguments used in the proof of [8, Proposition 3.5] with the ones in the proof of [3, 
Lemma 5]. �

We now consider the sets Fj and the min-max levels cj defined respectively in (2.2) and (2.3)
and we turn to the proof of the validity of assumptions (i)-(ii)-(iii) of Theorem 2.6.

At first, we deal with (i)-(ii).

Lemma 3.6. For every integer j ≥ 1, it holds that:

(i) Fj �= ∅,
(ii) cj < +∞.

Proof. We first prove that (i) holds when there is only one curve r1 of singularities. To this aim, 
we make use of the following auxiliary open sets in CT := {x ∈ C([0, T ], R3) : x(0) = x(T )}, 
endowed with the topology of uniform convergence:


1 = {x ∈ CT : x(t) �= r1(t), ∀ t ∈ [0, T ]}

0 = {x ∈ CT : x(t) �= 0, ∀ t ∈ [0, T ]}

and of the continuous and dense immersion ι : X → CT . We have that X ∩ 
1 = ι−1(
1) and 
that ι|X∩
1 : X ∩ 
1 → 
1 is a homotopy equivalence by [21, Theorem 16]. Since the affine 
isometry x �→ x − r1 maps 
1 onto 
0, we have that its composition with ι|X∩
1 provides a 
homotopy equivalence between X ∩ 
1 and 
0. Using [12, Corollary 2.8], we deduce that the 
cup length in Z2 of 
0 is infinite. Since the cup length is a homotopy invariant, we infer that 
X ∩ 
1 contains compact sets with arbitrarily large category by [11, Lemma 2.9].

Now, we are going to show that, for each j ≥ 1, there exists a compact A ⊂ 
 ∩Dψ such that 
catX(A, 
) ≥ j ; this will imply both (i) and (ii), since our functional ψ is bounded in Dψ . We 
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just showed that there exists a compact A1 ⊂ 
1 such that catX(A1, 
1 ∩X) ≥ j . For each λ > 0
and x ∈ X we define xλ = r1 +λ(x − r1) and observe that xλ ∈ 
1 ∩X if and only if x ∈ 
1 ∩X. 
We set Aλ = {xλ : x ∈ A1} which is compact and homeomorphic to A1 so that

catX(Aλ,
1 ∩ X) = catX(A1,
1 ∩ X) ≥ j ∀ λ > 0.

Now, let δ := min{|r1(t) − rj (t)| : t ∈ [0, T ], j = 2, . . . , N} > 0. Since

‖xλ − r1‖ = λ‖x − r1‖ ≤ λdist(r1,A1) < +∞ ∀ x ∈ A1 and ∀ λ > 0,

for λ < δ/ dist(r1, A1) we have that Aλ ⊂ 
 and

catX(Aλ,
) ≥ catX(A1,
1 ∩ X) ≥ j

by property (P2). On the other hand, we have that

‖ẋλ‖∞ ≤ ‖ṙ1‖∞ + λ‖ẋ − ṙ1‖∞ ≤ c ∀ x ∈ A1 if λ ≤ c − ‖ṙ1‖∞
maxx∈A1 ‖ẋ − ṙ1‖∞

.

Hence, if λ > 0 is small enough we have that Aλ ⊂ Dψ ∩ 
 and Aλ ∈ Fj . �
Finally, we prove that (iii) of Theorem 2.6 is satisfied with j0 = 3 (while it can be shown that 

c1 = c2 = 0).

Lemma 3.7. It holds that c3 > 0.

Proof. Suppose by contradiction that c3 = 0, that is

inf
A∈F3

sup
x∈A

I (x) = 0.

Then, for every n ∈N there exists An ∈ F3 such that

0 ≤ sup
x∈An

I (x) <
1

n
.

Of course, An ⊂ DI . Hence, taking into account that I = ψ + �, with ψ ≥ 0 and � > 0 in DI

(cf. (3.6)), we get

0 ≤ ψ(x) <
1

n
and 0 ≤ �(x) <

1

n
, ∀ x ∈ An. (3.13)

In particular, noticing that

ψ(x) ≥ 1

2

T∫
|ẋ(t)|2 dt, ∀ x ∈ An,
0
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we obtain

||ẋ||L2 <

√
2

n
, ∀ x ∈ An, (3.14)

and so, from Sobolev inequality (see, for instance, [19, Proposition 1.3]),

|x̃(t)| ≤
√

T

6n
, ∀ x ∈ An, t ∈ [0, T ], (3.15)

where we have written as usual x(t) = x̄ + x̃(t), with x̄ = 1
T

∫ T

0 x(t) dt .
Now, we claim that, fixed an arbitrary constant R > 0 with the property that

max{|ri(t)| : t ∈ [0, T ], i = 1, . . . ,N} ≤ R

2
, (3.16)

there exists n∗ ∈N such that, for every n ≥ n∗,

x ∈ An =⇒ |x(t)| ≥ 2R, ∀ t ∈ [0, T ]. (3.17)

Indeed, let ι∗ be defined by

ι∗ = inf{−V (t, x) : t ∈ [0, T ], |x| < 3R, (t, x) ∈ �}

and observe that ι∗ > 0 by assumption (V); moreover, let n∗ ∈ N be such that

n∗ ≥ max

(
1

(1 − κ ′) ι∗ T
,

2T

R2

)
. (3.18)

Assume now by contradiction that there exist n ≥ n∗, x ∈ An and t0 ∈ [0, T ] such that |x(t0)| <
2R. Then, from (3.14) we infer that

|x(t)| ≤ |x(t0)| +
T∫

0

|ẋ(t)|dt ≤ |x(t0)| +
√

2T

n
, ∀ t ∈ [0, T ],

and hence from (3.18) we deduce that |x(t)| < 3R, for every t ∈ [0, T ]. Therefore, recalling (3.5)
and (3.13), we have

1

n∗ > �(x) ≥ (1 − κ ′)
T∫

0

−V (t, x(t)) dt > (1 − κ ′) ι∗ T ,

which contradicts (3.18).
At this point, we notice that from (3.15) and (3.18) it follows that

|x̃(t)| ≤ R, ∀ x ∈ An, t ∈ [0, T ].
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Hence, taking into account (3.17) we deduce that, for every n ≥ n∗,

x ∈ An =⇒ |x̄ + (1 − λ)x̃(t)| ≥ R, ∀ t ∈ [0, T ], ∀λ ∈ [0,1]. (3.19)

In particular, recalling (3.16), x̄ + (1 − λ)x̃ ∈ 
 for every x ∈ An and λ ∈ [0, 1]. Hence, the map 
H : [0, 1] × An → 
 given by

H(λ,x) = x̄ + (1 − λ)x̃

provides a deformation in 
 of An into A′
n = H(1, An). Hence, by property (P4) of the category,

catX(An,
) ≤ catX(A′
n,
). (3.20)

On the other hand, we observe that, setting

� = {x ∈ 
 : x(t) ≡ c with |c| ≥ R},

from (3.19) we have that A′
n ⊂ � ⊂ 
. Hence, from properties (P1) and (P2) of the category,

catX(A′
n,
) ≤ catX(�,
) ≤ catX(�,�). (3.21)

The set � is clearly homeomorphic to R3 \ BR(0) (with BR(0) the open ball of radius R) and so 
catX(�, �) = 2. Hence, (3.20) and (3.21) yield

catX(An,
) ≤ 2,

contradicting the fact that An ∈ F3. �
From Lemmas 3.4, 3.5, 3.6 and 3.7 we deduce that all the assumptions of Theorem 2.6 are 

satisfied and then Theorem 3.1 is proved.

4. Applications

In this section, we give some applications of our main result.
The first one deals with the motion of a charge under the effect of the electric and magnetic 

field generated by N moving charges.
For the second one, we move to the interpretation of equation (3.1) in relativistic celestial 

mechanics, dealing with the motion of a particle in a perturbed Kepler potential.

4.1. The Liénard-Wiechert potentials

Les us consider the motion of a charged particle with m/q = 1 under the effect of N moving 
electric point charges.

We denote by q1, . . . , qN the moving charges and by r1, . . . , rN their trajectories, which we 
assume to be C2 functions rj : R →R3, T -periodic and such that |ṙj (t)| < c for every t ∈ [0, T ]
and ri(t) �= rj (t) for every t ∈ [0, T ] and i �= j (cf. Section 3). Let us now set, for i = 1, . . . , N ,
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βi(t) = ṙi (t)

c
, ∀ t ∈ [0, T ], i = 1, . . . ,N,

and observe that

||βi ||∞ < 1. (4.1)

Moreover, we define ηi : � →R3 by

ηi(t, x) = x − ri(t)

|x − ri(t)| , ∀ (t, x) ∈ �

and ti : � → R by the implicit relation

ti = t − 1

c
|x − ri(ti)|. (4.2)

It is well-known that, for every i = 1, . . . , N , the number ti is the retarded time. The existence 
and uniqueness of a solution of (4.2) for a fixed (t, x) ∈ � is a standard fact in special relativity 
and it can be proved by means of a plain implicit function argument, which also implies that ti is 
a function of class C1. Moreover, the periodicity of ri implies that ti is T -periodic as a function 
of the time variable t .

The Liénard-Wiechert scalar and vector potentials generated by the point charge source qi , 
i = 1, . . . , N , acting on a charge at the point (t, x), are given, respectively, by

Vi(t, x) = qi

4πε0

1

1 − ηi(ti , x) · βi(ti)

1

|x − ri(ti)| (4.3)

and

Ai(t, x) = βi(ti)

c
Vi(t, x), (4.4)

where ti = ti (t, x) and ε0 is the vacuum permittivity. For future reference, let us recall that the 
corresponding electric and magnetic fields are given by

Ei(t, x) = qi

4πε0

(
ηi(ti , x) − βi(ti)

γ 2
i (1 − ηi(ti , x) · βi(ti))3

1

|x − ri(ti)|2

+ηi(ti , x) × ((ηi(ti , x) − βi(ti)) × β̇i (ti ))

c (1 − ηi(ti , x) · βi(ti))3

1

|x − ri(ti)|
)

,

where γi = 1/
√

1 − |βi |2 is the Lorentz factor, and

Bi(t, x) = ηi(ti , x)

c
× Ei(t, x), (4.5)

respectively (cf. [17, §14.1]).
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Let us notice that Vi and Ai (and then Ei and Bi ) are well-defined in �: indeed, from (4.2)
we first deduce that

x − ri(ti) = 0 ⇐⇒ t = ti ,

thus implying that (t, x) = (ti , ri(ti)), which is impossible if (t, x) ∈ �. On the other hand, if 
(t, x) ∈ � we have

|ηi(ti , x) · βi(ti)| ≤ ||βi ||∞
and then, by (4.1),

1 − ηi(ti , x) · βi(ti) ≥ 1 − ||βi ||∞ > 0. (4.6)

We are now in a position to state our result on periodic motions under Liénard-Wiechert 
potentials.

Theorem 4.1. In the above setting, let us assume that qi < 0, for every i = 1, . . . , N . Let

V (t, x) =
N∑

i=1

Vi(t, x), A(t, x) =
N∑

i=1

Ai(t, x), (4.7)

for every (t, x) ∈ �, where Vi and Ai , i = 1, . . . , N , are given in (4.3) and (4.4), respectively.
Then, the corresponding Lorentz force equation (3.1) has infinitely many T -periodic solutions.

Proof. The result follows from Theorem (3.1). We need to show that V and A satisfy assump-
tions (V), (AV1) and (AV2).

As far as (V) is concerned, the assumption qi < 0, for every i = 1, . . . , N , implies that 
V (t, x) < 0, for every (t, x) ∈ �. Moreover, from (4.2) and the definition of βi we deduce that

c(t − ti ) = |x − ri(ti)| ≤ |x − ri(t)| + |ri(t) − ri(ti)| ≤ |x − ri(t)| + c||βi ||∞(t − ti ), (4.8)

thus implying

c(t − ti ) ≤ |x − ri(t)|
1 − ||βi ||∞ .

Using this estimate in (4.8), we infer

|x − ri(ti)| ≤ 1

1 − ||βi ||∞ |x − ri(t)|.

This relation, together with (4.6) and the sign assumption on the charges, implies that

Vi(t, x) ≤ qi 1
,

4πε0 |x − ri(t)|
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for every (t, x) ∈ �. Recalling that Vj (t, x) < 0, for every (t, x) ∈ � and j = 1, . . . , N , we 
conclude that

V (t, x) = Vi(t, x) +
∑
j �=i

Vj (t, x) ≤ qi

4πε0

1

|x − ri(t)| ,

for every (t, x) ∈ �. This proves the validity of (3.3) with κ = max{κi : i = 1, . . . , N}, κi =
−qi/4πε0 and δ > 0 arbitrary.

The validity of (AV1) is an immediate consequence of the definition of Ai given in (4.4). 
Indeed, (AV1) is satisfied with

κ ′ = max{||βi ||∞ : i = 1, . . . ,N}
(observe that κ ′ < 1 by (4.1)).

Finally, we pass to the proof of the validity of (AV2), first observing that (1.2) implies that 
(AV2) can be written as

lim|x|→+∞ (|V (t, x)| + |∇xE(t, x)| + |B(t, x)|) = 0, (4.9)

uniformly in t ∈R. For every i = 1, . . . , N , from (4.6) we infer that

|Vi(t, x)| ≤ −qi

4πε0

1

1 − ||βi ||∞
1

|x − ri(ti)| ,

for every (t, x) ∈ �. Now, defining

� = max{|ri(t)| : t ∈ R, i = 1, . . . ,N},
it is immediate to see that the set E = {(t, x) ∈ R ×R3 : |x| > � + 1} satisfies E ⊂ � and that

|Vi(t, x)| ≤ −qi

4πε0

1

1 − ||βi ||∞
1

|x| − �
, ∀ (t, x) ∈ �, |x| > � + 1,

thus implying

lim|x|→+∞|Vi(t, x)| = 0, ∀ i = 1, . . . ,N, (4.10)

uniformly in t ∈ R. Taking again into account (4.6), the fact that ηi , βi and β̇i are bounded and 
the definition of �, we deduce that there exists Z′ > 0 such that

|Ei(t, x)| ≤ qi

4πε0

Z′

(1 − ||βi ||∞)3

(
1

|x| − �
+ 1

(|x| − �)2

)
, ∀ (t, x) ∈ �, |x| > � + 1.

This proves that

lim |Ei(t, x)| = 0, ∀ i = 1, . . . ,N, (4.11)
|x|→+∞
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uniformly in t ∈R. Finally, from (4.5) and (4.11), recalling that ηi is bounded, we infer

lim|x|→+∞|Bi(t, x)| = 0, ∀ i = 1, . . . ,N, (4.12)

uniformly in t ∈ R. From the fact that (4.10), (4.11) and (4.12) hold for every i = 1, . . . , N , 
recalling (4.7), we can conclude that (4.9) is fulfilled. �
4.2. The forced relativistic Kepler problem

Let us consider the equation

d

dt

(
mẋ√

1 − |ẋ|2/c2

)
= −α

x

|x|3 + ∇xU(t, x), x ∈ R3, (4.13)

interpreted as the relativistic Kepler problem (m, α > 0), perturbed by an external force.
The following result holds true.

Theorem 4.2. Let U : R ×R3 → R be a C1 function, T -periodic in the first variable, satisfying 
U(t, x) > 0 for every (t, x) ∈R ×R3 and

lim|x|→+∞(|U(t, x)| + |∇xU(t, x)|) = 0, (4.14)

uniformly in t ∈ R.
Then, equation (4.13) has infinitely many T -periodic solutions.

Proof. The result follows from Theorem 3.1. Indeed, let us first observe that here � = {(t, x) ∈
R ×R3 : x �= 0},

V (t, x) = − α

m|x| − 1

m
U(t, x), A(t, x) = 0, ∀ (t, x) ∈ �.

Then, from the sign condition on U we plainly deduce that (V) (with κ = 1 and arbitrary δ > 0) is 
satisfied. Moreover, assumption (AV1) is trivially fulfilled since A ≡ 0. Finally, from assumption 
(4.14), we infer that

lim|x|→+∞(|V (t, x)| + |∇xV (t, x)|) = 0,

uniformly in t ∈R. Recalling again that A ≡ 0, this proves the validity of (AV2). �
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