Given a smooth function U(t, x), T-periodic in the first variable and satisfying U(t, x) = O(vertical bar x vertical bar(alpha)) for some alpha is an element of (0, 2) as vertical bar x vertical bar -&gt; infinity, we prove that the forced Kepler problem(sic) = -x/vertical bar x vertical bar(3) + del U-x(t, x), x is an element of R-2,has a generalized T-periodic solution, according to the definition given in the paper by A. Boscaggin, R. Ortega, and L. Zhao [Trans. Amer. Math. Soc. 372 (2019), 677-703]. The proof relies on variational arguments.

Periodic solutions to a forced kepler problem in the plane / Boscaggin, A.; Dambrosio, W.; Papini, D.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 148:1(2020), pp. 301-314. [10.1090/proc/14719]

### Periodic solutions to a forced kepler problem in the plane

#### Abstract

Given a smooth function U(t, x), T-periodic in the first variable and satisfying U(t, x) = O(vertical bar x vertical bar(alpha)) for some alpha is an element of (0, 2) as vertical bar x vertical bar -> infinity, we prove that the forced Kepler problem(sic) = -x/vertical bar x vertical bar(3) + del U-x(t, x), x is an element of R-2,has a generalized T-periodic solution, according to the definition given in the paper by A. Boscaggin, R. Ortega, and L. Zhao [Trans. Amer. Math. Soc. 372 (2019), 677-703]. The proof relies on variational arguments.
##### Scheda breve Scheda completa Scheda completa (DC)
2020
148
1
301
314
Periodic solutions to a forced kepler problem in the plane / Boscaggin, A.; Dambrosio, W.; Papini, D.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 148:1(2020), pp. 301-314. [10.1090/proc/14719]
Boscaggin, A.; Dambrosio, W.; Papini, D.
File in questo prodotto:
File
BosDamPap_PAMS2020.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 245.65 kB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11380/1327349`