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Abstract. Given a smooth function U(t, x), T -periodic in the first variable
and satisfying U(t, x) = O(|x|α) for some α ∈ (0, 2) as |x| → ∞, we prove that
the forced Kepler problem

ẍ = − x

|x|3
+∇xU(t, x), x ∈ R

2,

has a generalized T -periodic solution, according to the definition given in the

paper by A. Boscaggin, R. Ortega, and L. Zhao [Trans. Amer. Math. Soc.
372 (2019), 677–703]. The proof relies on variational arguments.

1. Introduction and statement of the main result

In this paper we investigate the existence of T -periodic solutions to the equation

(1) ẍ = − x

|x|3 +∇xU(t, x), x ∈ R
2,

where U : R × R
2 → R is a (smooth) function T -periodic in its first variable (for

some T > 0). A special interesting case occurs when U(t, x) = 〈p(t), x〉 for some
T -periodic forcing term p, which gives rise to the equation

(2) ẍ = − x

|x|3 + p(t), x ∈ R
2.

As is well known, equation (1) models the motion of a massless particle x ∈ R
2

subject to the action of both the gravitational force and an external force with
potential U(t, x); accordingly, it can be meant as a (time-periodically) forced Kepler
problem. In spite of its simple looking structure, such an equation possesses some
peculiar features making it a quite paradigmatic model for the methods of nonlinear
analysis and dynamical systems. In particular, as typical in problems of celestial
mechanics, the possibility for a solution to approach the collision set {x = 0} has
to be taken into account, leading to substantial difficulties.
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To the best of our knowledge, most of the results available up to now have been
proved in a perturbative setting, namely, for the equation

(3) ẍ = − x

|x|3 + ε∇xU(t, x), x ∈ R
2,

with ε small enough; see [2, 11, 13, 18–20] and the references therein. In such a
case, classical (i.e., without collisions) T -periodic solutions are found, for ε small
enough, near the ones of the unperturbed Kepler problem (ε = 0), via perturbative
techniques. Also, this situation, however, is far from being trivial, since the peculiar
degeneracies of the Kepler problem rule out the possibility of using the standard
perturbation theory of completely integrable Hamiltonian systems. As a matter
of fact, one is typically led to assume some symmetry conditions on the potential
U(t, x), eventually ruling out the simple case of equation (2). We also mention the
paper [4] in which the case ε large is considered.

As far as equation (1) is concerned, some results were given in [27]. In that paper,
global variational methods are used, requiring the development of delicate action
level estimates for solutions approaching the origin. In order for this procedure to
work so as to prevent the occurrence of collisions, again some symmetry conditions
on the potential are imposed and equation (2) is left out from the analysis therein.

Recently, a different point of view has been proposed in [12], where a suitable
definition of a generalized solution to (1) was given. We recall it below for the
reader’s convenience.

Definition 1.1. A generalized T -periodic solution to (1) is a continuous and T -
periodic function x : R → R

2 satisfying the following conditions:

(i) the set Ex := {t ∈ R : x(t) = 0} of collision instants is discrete,
(ii) for any open interval I ⊂ R \ Ex, the function x is C2(I) and satisfies (1)

on I,
(iii) for any t0 ∈ Ex, the limits

lim
t→t0

x(t)

|x(t)| and lim
t→t0

(
1

2
|ẋ(t)|2 − 1

|x(t)|

)

exist and are finite.

The possibility of considering solutions attaining the value x = 0 was already
discussed by various authors (see, for instance, [3, 5, 31]). However, while in these
papers a generalized solution is just meant as an H1-function attaining the value
x = 0 on a zero-measure set (and solving the equation on the complementary set),
Definition 1.1 requires a precise behavior at the collisions instants: that is, both

the collision direction x(t)
|x(t)| and the collision energy 1

2 |ẋ(t)|2 −
1

|x(t)| are continuous

functions. As shown in [12], this is a very natural definition of a solution for
equation (1), since it corresponds to the notion of a solution provided by the well
known Levi-Civita regularization for the planar Kepler problem (see [34] for some
basic references about the theory of regularization in celestial mechanics and [24] for
an application of regularization techniques to a Kepler problem with linear drag).

Using Levi-Civita regularization together with a delicate bifurcation theory from
(fixed-energy) periodic manifolds of autonomous Hamiltonian systems [35], a uni-
versal existence result can be proved for equation (3): precisely, with no assump-
tions (but the smoothness) on the potential U(t, x), multiple generalized T -periodic
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solutions always exist provided that ε is small enough (see [12, Theorem 3.1] for a
more precise statement).

The aim of this brief paper is to extend at least the existence part of that result
to a nonperturbative setting. Precisely, we are going to prove the following theorem.

Theorem 1.2. Let U : R×R
2 → R be a C1 function, T -periodic in the first variable

(for some T > 0); moreover, suppose that, for some C > 0 and α ∈ (0, 2),

(4) |U(t, x)| ≤ C(1 + |x|α), for every (t, x) ∈ R× R
2.

Then, there exists at least one generalized T -periodic solution to (1).

In particular, a generalized T -periodic solution to (2) exists, for any T -periodic
function p of class C1. Incidentally, we mention that the existence and multiplicity
of generalized T -periodic and quasi-periodic solutions to the one-dimensional forced
Kepler problem

ẍ = − x

|x|3 + p(t), x ∈ R
+ := [0,+∞),

was previously investigated in [25, 26, 37], using the Poincaré–Birkhoff fixed point
theorem and KAM theory.

The proof of Theorem 1.2 relies on a variational argument. This kind of apporach
has also been used for other equations in celestial mechanics; see, e.g., [2,3,5–10,14,
21, 23, 27, 28, 32, 33, 36] and the references therein. First, in Section 2 we minimize
the action functional associated with (1) on the weak closure of H1-loops with
nontrivial winding number around the origin: as is well known (see [22]), this
topological constraint provides the needed coercivity so that a minimum exists by
the direct method of calculus of variations. Then, in Section 3 we investigate the
behavior of the above found minimum near its possible collisions, so as to prove
that it corresponds to a generalized T -periodic solution according to Definition 1.1.
The hardest part of this step is to show that the ingoing and outgoing collision
directions must coincide (that is, the existence of the first limit in condition (iii)):
we prove this via a blow-up analysis, eventually relying on a well-known action level
estimate for the direct and indirect Keplerian arc (see Lemma 3.3).

2. Minimizing the action functional

In this section we prove the existence of a minimum, in a suitable class of func-
tions, of the action functional associated with (1).

To this end, for every continuous function x : [0, T ] → R
2 \ {0} such that x(0) =

x(T ), we first denote by rx the winding number of x around the origin, that is,
writing in polar coordinates x(t) = ρ(t)eiθ(t), with ρ(t) > 0,

rx =
θ(T )− θ(0)

2π
.

Denoting by H1
T the Sobolev space of H1-functions x : [0, T ] → R

2 satisfying
x(0) = x(T ), let us define

Xc =
{
x ∈ H1

T : ∃ t0 ∈ [0, T ] such that x(t0) = 0
}
,

Xr =
{
x ∈ H1

T : x(t) �= 0 ∀t ∈ [0, T ] and rx �= 0
}
,

and

X = Xc ∪ Xr.
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It is easy to see that X is sequentially weakly closed in H1
T ; moreover, in the set X

a Poincaré-type inequality holds true, as proved below (see also [22]).

Proposition 2.1. There exists K > 0 such that

(5)

∫ T

0

|x(t)|2 dt ≤ K

∫ T

0

|ẋ(t)|2 dt ∀ x ∈ X .

Proof. The result is well known if x ∈ Xc, since one can write x(t) =
∫ t

t0
ẋ(s) ds

(with x(t0) = 0) and use the Cauchy–Schwartz inequality so as to easily prove (5)
with K = T 2.

As for Xr, a little more work is needed. For any x ∈ Xr, we introduce the
notation

xM = max
t∈[0,T ]

|x(t)|, xm = min
t∈[0,T ]

|x(t)|;

let us observe that xm > 0, by definition of Xr. We write x = ρeiθ, with ρ = |x|, in
such a way that

ẋ = ρ̇eiθ + iρθ̇eiθ

and

|ẋ|2 = |ρ̇|2 + ρ2|θ̇|2.
It is immediate so see that

(6)

∫ T

0

|x(t)|2 dt ≤ T x2
M ≤ 2T (xM − xm)2 + 2T x2

m;

moreover, using the Cauchy–Schwartz inequality together with elementary esti-
mates, we can obtain

(7)

∫ T

0

|ẋ(t)|2 dt ≥
∫ T

0

|ρ̇(t)|2 dt+ x2
m

∫ T

0

|θ̇(t)|2 dt

≥ 1

T

(∫ T

0

|ρ̇(t)| dt
)2

+
x2
m

T

(∫ T

0

|θ̇(t)| dt
)2

≥ 1

T
(xM − xm)

2
+

x2
m

T

(∫ T

0

|θ̇(t)| dt
)2

.

Now, taking into account that x ∈ Xr, we infer that there exists k ∈ Z, k �= 0, such
that

θ(T )− θ(0) = 2kπ,

thus obtaining ∫ T

0

|θ̇(t)| dt ≥ |θ(T )− θ(0)| ≥ 2π > 1.

From this relation and from (7) we deduce that

(8)

∫ T

0

|ẋ(t)|2 dt ≥ 1

T
(xM − xm)2 +

1

T
x2
m.

Comparing (8) with (6), we plainly conclude that (5) holds true with K = 2T 2. �
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Now, for every [a, b] ⊂ [0, T ] let us define A[a,b] : X → (−∞,+∞] by

A[a,b](x) =

∫ b

a

(
1

2
|ẋ(t)|2 + 1

|x(t)| + U(t, x(t))

)
dt ∀ x ∈ X ,

and denote AT = A[0,T ]. From Proposition 2.1 and assumption (4) we deduce that
there exist K ′ > 0 such that

AT (x) ≥
∫ T

0

(
|ẋ(t)|2

4
+

1

4K
|x(t)|2 − C|x(t)|α

)
dt− CT

≥
∫ T

0

(
|ẋ(t)|2

4
+

1

8K
|x(t)|2

)
dt− (K ′ + C)T,

for every x ∈ X . This inequality implies that AT is coercive on X and, therefore,
we have the following.

Theorem 2.2. There exists x ∈ X such that

AT (x) = min
y∈X

AT (y).

Of course, x is a classical solution of (1) if x ∈ Xr.

3. Exploring collisions

In this section we assume that the minimum x given by Theorem 2.2 lies in the set
Xc and we prove that it is a generalized solution of (1), according to Definition 1.1.

To this end, we perform a study of the local behavior of x ∈ Xc near its collisions.
As in condition (i) of Definition 1.1, let

Ex = {t ∈ [0, T ] : x(t) = 0}

be the set of collision instants of x. From the condition

−∞ < AT (x) < +∞

we deduce that Ex has zero measure; taking into account that Ex is closed, by the
continuity of x, we infer that [0, T ] \ Ex is the (at most countable) union of open
intervals (an, bn), n ≥ 0, and that x ∈ C2(an, bn) satisfies

ẍ = − x

|x|3 +∇xU(t, x) ∀ t ∈ (an, bn) ∀ n ≥ 0.

Defining

(9) hx(t) =
1

2
|ẋ(t)|2 − 1

|x(t)| ∀ t ∈ [0, T ] \ Ex,

and

Ix(t) =
1

2
|x(t)|2 ∀ t ∈ [0, T ],

it is immediate to see that in the open set [0, T ] \ Ex the so-called virial identity

(10) Ïx(t) =
1

|x(t)| + 〈∇xU(t, x(t)), x(t)〉+ 2hx(t) ∀ t ∈ [0, T ] \ Ex,

holds true.
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3.1. The energy function and the number of collisions. The local study of
the energy function hx defined in (9) near collisions moves from the relation∫ T

0

|hx(t)| dt ≤
∫ T

0

(
1

2
|ẋ(t)|2 + 1

|x(t)|

)
dt = AT (x)−

∫ T

0

U(t, x(t)) dt,

which implies that hx ∈ L1(0, T ). In the next result (following a computation in
[16] dealing with the autonomous case), we show that the minimality of x implies
that hx can be extended to a continuous function in all [0, T ].

Proposition 3.1. Let x ∈ Xc be a minimizer of AT in X . Then the energy hx

defined in (9) belongs to W 1,1(0, T ) and, therefore, can be extended to a continuous
function in [0, T ].

Proof. We already noted that hx ∈ L1(0, T ); hence, we just need to prove that hx

has a distributional derivative which is an L1-function.
To this end, let us fix an arbitrary ϕ ∈ C∞

c ((0, T )) and, for λ ∈ R, define
ψλ : [0, T ] → R by

(11) ψλ(t) = t+ λϕ(t) ∀ t ∈ [0, T ].

Since ϕ has compact support in (0, T ), we deduce that ψλ(0) = 0 and ψλ(T ) = T
and the condition

ψ̇λ(t) = 1 + λϕ̇(t) ∀ t ∈ [0, T ],

implies that there exists λϕ > 0 such that ψλ is strictly increasing in [0, T ], for
every λ ∈ [−λϕ, λϕ]. As a consequence, for every λ ∈ [−λϕ, λϕ] we can define

xλ(t) = x(ψλ(t)) = x(t+ λϕ(t)) ∀ t ∈ [0, T ];

from the previous discussion we also get xλ ∈ Xc, for every λ ∈ [−λϕ, λϕ]. Hence,
from the minimality of x we deduce that

AT (x) ≤ AT (xλ), ∀ λ ∈ [−λϕ, λϕ],

thus implying that the function

l(λ) = AT (xλ) =

∫ T

0

(
|ẋλ(t)|2

2
+

1

|xλ(t)|
+ U(t, xλ(t))

)
dt ∀ λ ∈ [−λϕ, λϕ],

has a minimum in λ = 0.
Our goal now is to show that l(λ) is a C1 function in a neighborhood of λ = 0

and, thus, l′(0) = 0. By means of the change of variable s = ψλ(t), we plainly
obtain
(12)

l(λ) =

∫ T

0

(
|ẋ(s)|2

2
ψ̇λ(ψ

−1
λ (s))2 +

1

|x(s)| + U(ψ−1
λ (s), x(s))

)
ds

ψ̇λ(ψ
−1
λ (s))

for every λ ∈ [−λϕ, λϕ]. At this point some work is needed to show that it is
possible to differentiate under the integral sign. Defining

(13) gλ(s) = ψ̇λ(ψ
−1
λ (s)) = 1 + λϕ̇(ψ−1

λ (s)) ∀ s ∈ [0, T ], λ ∈ [−λϕ, λϕ],

we obtain

(14)
∂gλ
∂λ

(s) = ϕ̇(ψ−1
λ (s)) + λϕ̈(ψ−1

λ (s))
∂ψ−1

λ

∂λ
(s) ∀ s ∈ [0, T ], λ ∈ [−λϕ, λϕ].
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On the other hand, from the relation

ψ−1
λ (s) + λϕ(ψ−1

λ (s)) = s ∀ s ∈ [0, T ], λ ∈ [−λϕ, λϕ],

we deduce that

∂ψ−1
λ

∂λ
(s)+ϕ((ψ−1

λ (s)))+λϕ̇((ψ−1
λ (s)))

∂ψ−1
λ

∂λ
(s) = 0 ∀ s ∈ [0, T ] , λ ∈ [−λϕ, λϕ],

and
∂ψ−1

λ

∂λ
(s) = − ϕ((ψ−1

λ (s)))

1 + λϕ̇((ψ−1
λ (s)))

∀ s ∈ [0, T ], λ ∈ [−λϕ, λϕ].

Hence, from (14) we obtain

∂gλ
∂λ

(s) = ϕ̇(ψ−1
λ (s))− λ

ϕ̈(ψ−1
λ (s))ϕ((ψ−1

λ (s)))

1 + λϕ̇((ψ−1
λ (s)))

∀ s ∈ [0, T ], λ ∈ [−λϕ, λϕ].

Therefore, taking again into account (13), we deduce that there exist λ′
ϕ ≤ λϕ,

M ∈ (0, 1), and M ′ > 0 such that

(15) |gλ(s)| ≥ M,

∣∣∣∣∂gλ∂λ
(s)

∣∣∣∣ ≤ M ′ ∀ s ∈ [0, T ], λ ∈ [−λ′
ϕ, λ

′
ϕ].

Now, recalling (11), a simple computation shows that

∂

∂λ

(
|ẋ(s)|2

2
ψ̇λ(ψ

−1
λ (s)) +

1

|x(s)|ψ̇λ(ψ
−1
λ (s))

+
U(ψ−1

λ (s), x(s))

ψ̇λ(ψ
−1
λ (s))

)

=
|ẋ(s)|2

2

∂gλ
∂λ

(s)− 1

|x(s)|

∂gλ
∂λ (s)

gλ(s)2
+ ∂tU(ψ−1

λ (s), x(s))
∂ψ−1

λ

∂λ
(s)

1

gλ(s)

− U(ψ−1
λ (s), x(s))

∂gλ
∂λ (s)

gλ(s)2
,

for every s ∈ [0, T ] and λ ∈ [−λ′
ϕ, λ

′
ϕ]. From (15), setting

M1 = max
t∈[0,T ]

|ϕ(t)|, M2 = max
s,t∈[0,T ]

|U(t, x(s))|, M3 = max
s,t∈[0,T ]

|∂tU(t, x(s))|

we deduce that

(16)

∣∣∣∣∣ ∂∂λ
(
|ẋ(s)|2

2
ψ̇λ(ψ

−1
λ (s)) +

1

|x(s)|ψ̇λ(ψ
−1
λ (s))

+
U(ψ−1

λ (s), x(s))

ψ̇λ(ψ
−1
λ (s))

) ∣∣∣∣∣
≤ M ′

M2

(
|ẋ(s)|2

2
+

1

|x(s)|

)
+

(
M1M3

M2
+

M ′M2

M2

)
,

for every s ∈ [0, T ] and λ ∈ [−λ′
ϕ, λ

′
ϕ]. Observing that the right-hand side in (16)

is an integrable function in [0, T ], from (12) and (16) we infer that l(λ) belongs to
C1([−λ′

ϕ, λ
′
ϕ]) and that

l′(λ) =

∫ T

0

(
|ẋ(s)|2

2

∂gλ
∂λ

(s)− 1

|x(s)|

∂gλ
∂λ (s)

gλ(s)2

+ ∂tU(ψ−1
λ (s), x(s))

∂ψ−1
λ

∂λ
(s)

1

gλ(s)
− U(ψ−1

λ (s), x(s))
∂gλ
∂λ (s)

gλ(s)2

)
ds,
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for every λ ∈ [−λ′
ϕ, λ

′
ϕ]. In particular, also integrating by parts,

l′(0) =

∫ T

0

[(
|ẋ(s)|2

2
− 1

|x(s)| − U(s, x(s))

)
ϕ̇(s)− ∂tU(s, x(s))ϕ(s)

]
ds

=

∫ T

0

[hx(s)ϕ̇(s) + 〈∇xU(s, x(s)), ẋ(s)〉ϕ(s)]ds.

Recalling that l′(0) = 0, since λ = 0 is a minimum point for l(λ), and that ϕ is an
arbitrary test function in C∞

c ((0, T )), this shows that

ḣx(t) = 〈∇xU(t, x(t)), ẋ(t)〉,

in the distributional sense. To conclude the proof, it is sufficient to observe that
U ∈ C1 and ẋ ∈ L2(0, T ). �

From Proposition 3.1 we deduce that hx is bounded in [0, T ]; using this fact,
arguing exactly as in [29, Lemma 3], from (10) we conclude that collisions are
isolated, implying that Ex is a finite set. Moreover, the continuity of hx also
implies that the second limit in condition (iii) of Definition 1.1 exists and is finite.

3.2. Asympotic directions near isolated collisions. In this part, via a blow-
up analysis, we study the local behaviour of the ratio x/|x| near a collision of x; to
this end, we use the classical asymptotic estimates near collisions due to Sperling
(see [30]), together with the comparison between action levels of solutions of the
unperturbed Kepler problem.

Let t0 ∈ (0, T ) be a collision of x; if t0 = 0 or t0 = T , the argument is the same,
replacing [0, T ] by [−T/2, T/2], by periodicity.

From the previous discussion we know that t0 is isolated; as a consequence, there
exists t̄ > 0 such that

x(t) �= 0 ∀ t ∈ Ī := [t0 − t̄, t0 + t̄], t �= t0.

From the classical paper by Sperling [30] it is known that there exist x±
0 ∈ R

2, with
|x±

0 | = 1, such that

(17)

x(t) = 3

√
9

2
(t− t0)

2/3 x+
0 +R+(t) ∀ t ∈ [t0, t0 + t̄],

x(t) = 3

√
9

2
(t− t0)

2/3 x−
0 +R−(t) ∀ t ∈ [t0 − t̄, t0],

and

(18)

ẋ(t) =
2

3
3

√
9

2
(t− t0)

−1/3 x+
0 + Ṙ+(t) ∀ t ∈ (t0, t0 + t̄],

ẋ(t) =
2

3
3

√
9

2
(t− t0)

−1/3 x−
0 + Ṙ−(t) ∀ t ∈ [t0 − t̄, t0),

for some R± ∈ C(Ī;R2) ∩ C1([t0 − t̄, t0) ∪ (t0, t0 + t̄ ];R2) such that

(19) lim
t→t±0

R±(t)

(t− t0)2/3
= 0 and lim

t→t±0

Ṙ±(t)

(t− t0)−1/3
= 0.
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Now, since by Proposition 3.1 hx can be extended to a continuous function in t0,
from (10) we deduce that I is strictly convex in a neighborhood of t0; hence, for
every sufficiently small δ > 0 there exist unique 0 < t±δ < t̄ such that

(20)
|x(t0 − t−δ )| = |x(t0 + t+δ )| = δ,

|x(t)| < δ ∀ t ∈ Iδ := (t0 − t−δ , t0 + t+δ ).

We observe that estimates (17) already imply that

(21) lim
t→t±0

x(t)

|x(t)| = x±
0 .

Therefore, in order to conclude our proof and show that the minimum x of the
action functional on X is a generalized solution in the sense of Definition 1.1, we
just need to show that x+

0 = x−
0 . This last fact will be obtained by showing that a

collision solution with x+
0 �= x−

0 cannot be a minimizer of the action in X . In fact,
we will prove that if x+

0 �= x−
0 , then it is possible to modify x in a neighborhood of

the collision time t0 and to obtain a noncollision path with a smaller action that
still belongs to X .

The first step in this argument is to estimate from below A[t0−t−δ ,t0+t+δ ](x). The

comparison term involves the action relative to colliding parabolic Keplerian orbits.
More precisely, given x±

0 ∈ R
2, with |x±

0 | = 1, let us define

(22) ζ0(t;x
−
0 , x

+
0 ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3

√
9

2
t2/3x+

0 if t ≥ 0,

3

√
9

2
t2/3x−

0 if t < 0.

It is easy to check that ζ0(t;x
−
0 , x

+
0 ) is a parabolic solution of the unperturbed

Kepler equation in the intervals (−∞, 0) and (0,+∞), having a collision at t = 0;
moreover, taking s0 > 0 such that

(23)
3

√
9

2
s20 = 1,

it holds that ∣∣ζ0(±s0;x
−
0 , x

+
0 )

∣∣ = 1.

We then define

(24) ϕ0 =

∫ s0

−s0

(
1

2

∣∣∣ζ̇0(t;x−
0 , x

+
0 )

∣∣∣2 + 1∣∣ζ0(t;x−
0 , x

+
0 )

∣∣
)

dt = 4
6
√
8,

which actually does not depend on x±
0 and is the action of ζ0(·;x−

0 , x
+
0 ) in [−s0, s0]

relative to the Kepler problem without forcing term. Then, we are able to prove
the following estimate.

Lemma 3.2. Let t0 be a collision time for a minimizer x of AT in X , and let t±δ ,

x±
0 , ζ0, s0, and ϕ0 be as in (20)–(24). If we set σ±

δ = t±δ /δ
3/2, then we have that

lim
δ→0+

σ±
δ = s0 and lim

δ→0+

A[t0−t−δ ,t0+t+δ ](x)

δ1/2
= ϕ0.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

310 ALBERTO BOSCAGGIN, WALTER DAMBROSIO, AND DUCCIO PAPINI

Proof. We employ a blow-up argument: for every δ > 0 we define

(25) zδ(t) =
1

δ
x
(
δ3/2t+ t0

)
, for t ∈

[
− t

δ3/2
,

t

δ3/2

]
.

From the relations in (20), recalling also that x has a collision in t0, we deduce that
the function zδ satisfies

(26)
|zδ(−σ−

δ )| = |zδ(σ+
δ )| = 1, zδ(0) = 0,

|zδ(t)| < 1 ∀ t ∈
(
−σ−

δ , σ
+
δ

)
.

Let us also observe that from (25) we deduce

(27)

A[t0−t−δ ,t0+t+δ ](x)

δ1/2
=

1

δ1/2

∫ t0+t+δ

t0−t−δ

(
|ẋ(t)|2

2
+

1

|x(t)| + U(t, x(t))

)
dt

=

∫ σ+
δ

−σ−
δ

(
|żδ(t)|2

2
+

1

|zδ(t)|

)
dt+ δ2

∫ σ+
δ

−σ−
δ

U
(
δ3/2t+ t0, zδ(t)

)
dt.

Now, let us study the convergence of the sequence zδ when δ → 0+. Now, from
(17) and (18) we infer that

zδ(t) =
3

√
9

2
t2/3 x+

0 +
1

δ
R+(δ3/2t+ t0) ∀ t ∈

[
0,

t

δ3/2

]
,

zδ(t) =
3

√
9

2
t2/3 x−

0 +
1

δ
R−(δ3/2t+ t0) ∀ t ∈

[
− t

δ3/2
, 0

]
,

and

żδ(t) =
2

3
3

√
9

2
t−1/3 x+

0 + δ1/2Ṙ+(δ3/2t+ t0) ∀ t ∈
(
0,

t

δ3/2

]
,

żδ(t) =
2

3
3

√
9

2
t−1/3 x−

0 + δ1/2Ṙ−(δ3/2t+ t0) ∀ t ∈
[
− t

δ3/2
, 0

)
,

where, taking into account (19),

lim
δ→0+

1

δ
R±(δ3/2t+ t0) = lim

s→t0
t2/3

R±(s)

(s− t0)2/3
= 0 ∀t ∈ R,

lim
δ→0+

δ1/2Ṙ±(δ3/2t+ t0) = lim
s→t0

1

t1/3
Ṙ±(s)

(s− t0)−1/3
= 0 ∀t ∈ R \ {0}.

Therefore, we obtain that zδ converges to ζ0(·;x−
0 , x

+
0 ) in H1

loc(R) and uniformly
on compact sets. Recalling (22), (23), and (26) and letting δ → 0 in (27) we obtain
the thesis. �

The previous blow-up argument shows that a suitable rescaling of a minimizer
around a collision time converges to the parabolic collision solution of Kepler’s
problem ζ0(·;x−

0 , x
+
0 ), given by (22), that joins two points x−

0 in a prescribed time
interval of length 2s0. However, if x+

0 �= x−
0 , there exist two collision-free Keplerian



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PERIODIC SOLUTIONS TO FORCED KEPLER PROBLEM IN THE PLANE 311

orbits, ξ10 and ξ20 , that join the same two points in the same time interval but with
a smaller action than ϕ0. We collect this fact in the next result together with other
useful and known properties.

Lemma 3.3 ([21, Prop. 5.7]). For any x±
0 ∈ R

2, with |x±
0 | = 1 and x+

0 �= x−
0 ,

there are two solutions ξi = ξi(·;x−
0 , x

+
0 ) : [−s0, s0] → R

2 \ {(0, 0)}, i = 1, 2, of the
problem

(28)

⎧⎨
⎩ξ̈ = − ξ

|ξ|3 in [−s0, s0],

ξ(±s0) = x±
0

such that

(i) they parametrize two simple curves which are not homotopic to each other
in R

2 \ {(0, 0)} with fixed endpoints; more precisely, the curve obtained by
the concatenation of ξ1(s;x−

0 , x
+
0 ) and ξ2(−s;x−

0 , x
+
0 ) is a Jordan curve

around the origin;
(ii) their actions satisfy

ϕi
0(x

−
0 , x

+
0 ) :=

∫ s0

−s0

(
|ξ̇i(t)|2

2
+

1

|ξi(t)|

)
dt < ϕ0, i = 1, 2;

(iii) up to a suitable choice of the label i ∈ {1, 2}, they depend smoothly on x±
0 ;

namely, if x±
n → x±

0 as n → +∞, with |x0|± = 1 and x+
0 �= x−

0 , then
ξi(·;x−

n , x
+
n ) → ξi(·;x−

0 , x
+
0 ) in C2([−s0, s0];R

2).

The above solutions ξ1 and ξ2 are usually called the direct and indirect Keplerian
arcs and the proof of their existence is typically attributed to Marchal (see [17, Sec-
tion 5.2]). Nowadays, various proofs are available, at different levels of generality
(see [15, 21, 29, 33, 36]). In particular, their existence with the first statement is
proved in [1], while the estimate in the second statement is considered in [21, Propo-
sition 5.7]. The third statement follows from the theorem of continuous dependence

on initial data as soon as one realizes that the initial speed ξ̇(−s0) of the solutions of
(28) depend smoothly on x±

0 . It is possible to use Lambert’s Theorem (see [1, Lec-
ture 5]) to find an explicit formula that links the energy Hi of ξi and |x+

0 − x−
0 |.

Indeed, Lambert’s Theorem states that the quantities � := |ξ(−s0)| + |ξ(s0)| = 2,

Δt := 2s0 = 2
√
2/3, c := |ξ(s0) − ξ(−s0)|, and H := |ξ̇|2 − 1/|ξ| are functionally

dependent for the solutions of (28) and that their functional relation is the same
for all configurations of ξ(±s0) as long as � and c are kept constant. Therefore
one easily obtains that the energy H and, hence, the modulus of the initial speed
|ξ̇(−s0)| depend continuously on x±

0 . As for the continuity of the initial speed versor

ξ̇(−s0)/|ξ̇(−s0)| one can use the arguments and the parametrization of the orbit of
the solutions of (28) given in [21, Appendix 2].

We can now conclude our argument by showing that the asymptotic directions
at a collision for a minimum of the action cannot be different.

Proposition 3.4. Let t0 be a collision time for a minimizer x of AT in X . Then
x+
0 = x−

0 .

Proof. Let q±δ = x(t0 ± t±δ )/|x(t0 ± t±δ )|. If, by contradiction, we suppose that

x+
0 �= x−

0 , then we have q+δ �= q−δ for all δ > 0 sufficiently small. Thus, we can apply
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Lemma 3.3 and use the Keplerian arcs ξi(·, q−δ , q
+
δ ) to modify x in a neighborhood

of t0 and to obtain two different paths in the following way:

yiδ(t) =

⎧⎨
⎩
x(t) if t ∈

[
0, t0 − t−δ

)
∪
(
t0 + t+δ , T

]
,

δξi
(
t− t0
δ3/2

; q−δ , q
+
δ

)
if t ∈ [t0 − t−δ , t0 + t+δ ],

for i = 1, 2.

If x has other collisions than t0, then both y1δ and y2δ belong to Xc ⊂ X . On the
other hand, if t0 is the only collision time for x, then, thanks to statement (i) in
Lemma 3.3, for each δ > 0 at least one between y1δ and y2δ belongs to Xr ⊂ X .
Straightforward computations show that

A[t0−t−δ ,t0+t+δ ](y
i
δ)

δ1/2
=

∫ σ+
δ

−σ−
δ

(
|ξ̇i(s; q−δ , q

+
δ )|2

2
+

1

|ξi(s; q−δ , q
+
δ )|

)
ds

+ δ2
∫ σ+

δ

−σ−
δ

U
(
δ3/2s+ t0, ξ

i(s; q−δ , q
+
δ )

)
ds.

By Lemma 3.2 and statements (ii) and (iii) of Lemma 3.3, we deduce that

lim
δ→0+

A[t0−t−δ ,t0+t+δ ](y
i
δ)

δ1/2
= ϕi

0(x
−
0 , x

+
0 ) < ϕ0 = lim

δ→0+

A[t0−t−δ ,t0+t+δ ](x)

δ1/2
, i = 1, 2.

Therefore, we have that AT (y
i
δ) < AT (x) for i = 1, 2 and every δ sufficiently small,

which contradicts the minimality of x. �
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