‘‘Inflammaging’’ refers to the chronic, low-grade proinflammatory status associated with ageing, in which biomarkers could predict physical and cognitive performance, as well as mortality in the elderly population. Although there is no specific biomarker, epidemiological evidence associates elevated levels of inflammatory mediators and the immune response to the recurrent infection by cytomegalovirus (CMV) with this condition. The current gold standard techniques for inflammatory biomarkers detection are Enzyme-linked immunosorbent assay and Flow cytometry-based technologies. Both techniques rely on antibody-antigen interaction, and colorimetric reaction to quantitatively determine the specific analyte. These techniques are very robust and characterized by high sensitivity and specificity; however, they require a relatively large amount of sample, specialized equipment and personnel, as well as fluorescent labeling. These disadvantages hamper their implementation at the point-of-care (PoC) and as portable devices. Within this thesis, we propose the development of biosensors based on Electrolyte Gated Organic Transistors (EGOTs) as an alternative to conventional techniques. EGOTs are rapidly emerging as one of the architectures of choice for label-free biosensing for their outstanding capability of amplification of small biological signals, operating at low voltages, and with a low-cost fabrication. As their inorganic counterpart, they are three-terminal devices, comprising source and drain electrodes connected by the organic semiconductor (OSC), and a third gate electrode, connected to the OSC through the electrolyte. The gate electrode is capacitively coupled to the OSC, therefore a potential application at the gate electrode leads to the formation of a first electrical double layer (EDL) at the gate/electrolyte interface, which induces the formation of a second EDL at the OSC/electrolyte interface, tunning the transistor electrical performance. The aim of this thesis is the development of individual EGOT-based biosensors for three aging biomarkers: Interleukin 6 (IL-6), Interleukin 1β (IL-1β), and anti-CMV antibodies. To this end, two EGOT architectures were explored, Organic Electrochemical Transistors (OECTs) and Electrolyte-Gated Field Effect Transistors (EGOFETs) as biosensors, which differ in the permeability of the OSC to ions penetration, and both working as potentiometric biosensors. In order to use EGOTs as biosensors, they were endowed with biorecognition capabilities by immobilizing biorecognition elements (e.g., antibodies) on the gate electrode. Consequently, the biorecognition event at the gate/electrolyte interface is transduced and amplified into a change in the drain current. During this thesis, different gate functionalization strategies were studied, optimized, and validated with complementary techniques, such as Electrochemical Impedance Spectroscopy (EIS) and Surface Plasmon Resonance (SPR). We demonstrated the detection of these biomarkers in the physio-pathological range, exploiting EGOT-based biosensors not only as a sensing tool but also for investigating the biorecognition phenomena occurring at the gate/electrolyte interface. Additionally, the integration of these devices with microfluidics led to the real-time monitoring of proteins. Finally, an alternative architecture was explored, based on an Extended-Gate OECT (EG-OECT), with the aim of reducing nonspecific response and to integrate these individual biosensors into one single platform for the simultaneous detection of several proteins in real samples. This work set the basis for the development of multiplexing sensing platforms based on EGOT architectures, with the final aim to implement it at the point-of-care.

Il termine "Inflammaging" si riferisce allo stato proinfiammatorio cronico di basso grado associato all'invecchiamento, in cui i biomarcatori potrebbero prevedere le prestazioni fisiche e cognitive, nonché la mortalità nella popolazione anziana. Sebbene non esistano biomarcatori specifici, l'evidenza epidemiologica associa l’inflammaging a livelli elevati di mediatori dell'infiammazione così come la risposta immunitaria all'infezione da Citomegalovirus (CMV). Le attuali tecniche di riferimento per il rilevamento dei biomarcatori infiammatori si basano su immunosensori e su una reazione colorimetrica per quantificare l'analita specifico. Queste tecniche sono molto robuste e caratterizzate da elevata sensibilità e specificità; tuttavia, richiedono una quantità relativamente grande di campioni, attrezzature e personale specializzati, nonché l’uso di “labels” come cromofori o fluorofori. Questi svantaggi ne ostacolano l'implementazione al point-of-care (PoC) e come dispositivi portatili. In questa tesi, proponiamo lo sviluppo di biosensori basati su transistor organici operanti in liquido (EGOT) come alternativa alle tecniche convenzionali. Gli EGOT si stanno imponendo come una delle architetture preferite per il rilevamento “label-free”, grazie alla loro eccezionale capacità di amplificazione di piccoli segnali biologici, operando a bassi potenziali e venendo fabbricati con metodi a basso costo. Gli EGOTs sono dispositivi a tre terminali, comprendenti elettrodi di source (S) e drain (D) collegati dal semiconduttore organico (OSC) e un terzo elettrodo di gate (G), collegato all'OSC tramite una soluzione elettrolitica. L'elettrodo di G è accoppiato capacitivamente all'OSC, quindi una applicazione di potenziale al G porta alla formazione di un primo doppio strato dielettrico (EDL, dall’inglese electrical double layer) all'interfaccia gate/elettrolita, e alla formazione di un secondo EDL all’interfaccia semiconduttore organico/elettrolita elettrolita, modulando così la risposta elettriche del transistor. Lo scopo di questa tesi è lo sviluppo di biosensori individuali basati su architettura EGOT per tre biomarcatori dell’inflammaging: Interleuchina 6, Interleuchina 1β e anticorpi anti-CMV. A tal fine, sono state esplorate due architetture EGOT: transistor elettrochimici organici (OECT) e transistor a effetto di campo modulati da elettrolita (EGOFET), i quali differiscono per la permeabilità dell'OSC alla penetrazione degli ioni. Per rendere gli EGOT sensibili ad un determinato marcatore, sono stati immobilizzati elementi di bioriconoscimento sull'elettrodo di G. Di conseguenza, l'evento di rilevazione all'interfaccia G/elettrolita viene trasdotto e amplificato in un cambiamento nella corrente di D. Durante questa tesi sono state studiate, ottimizzate e validate diverse strategie di funzionalizzazione del G con tecniche complementari, come la spettroscopia di impedenza elettrochimica (EIS) e la risonanza plasmonica di superficie (SPR). Abbiamo dimostrato la capacità di rilevazione di questi biomarcatori nell'intervallo fisio-patologico, e la possibilità di studiare la termodinamica dei processi di bioriconoscimento. Inoltre, l'integrazione di questi dispositivi con un sistema microfluidico ha consentito la quantificazione in tempo reale dei biomarcatori, dimostrando le potenzialità di questi dispositivi per un utilizzo PoC. Infine, è stata esplorata un'architettura alternativa, basata su un Extended-Gate OECT (EG-OECT), per integrare vari singoli biosensori in un'unica piattaforma per il rilevamento simultaneo di diverse proteine in campioni biologici. Questo lavoro getta le basi per lo sviluppo di piattaforme di rilevamento multiplexing basate su architetture EGOT, nell’ottica di un utilizzo finale delle stesse al point-of-care.

Rilevazione di biomarcatori dell'invecchiamento con elettronica organica / Pamela Allison Manco Urbina , 2023 Nov 21. 35. ciclo, Anno Accademico 2021/2022.

Rilevazione di biomarcatori dell'invecchiamento con elettronica organica

MANCO URBINA, PAMELA ALLISON
2023

Abstract

‘‘Inflammaging’’ refers to the chronic, low-grade proinflammatory status associated with ageing, in which biomarkers could predict physical and cognitive performance, as well as mortality in the elderly population. Although there is no specific biomarker, epidemiological evidence associates elevated levels of inflammatory mediators and the immune response to the recurrent infection by cytomegalovirus (CMV) with this condition. The current gold standard techniques for inflammatory biomarkers detection are Enzyme-linked immunosorbent assay and Flow cytometry-based technologies. Both techniques rely on antibody-antigen interaction, and colorimetric reaction to quantitatively determine the specific analyte. These techniques are very robust and characterized by high sensitivity and specificity; however, they require a relatively large amount of sample, specialized equipment and personnel, as well as fluorescent labeling. These disadvantages hamper their implementation at the point-of-care (PoC) and as portable devices. Within this thesis, we propose the development of biosensors based on Electrolyte Gated Organic Transistors (EGOTs) as an alternative to conventional techniques. EGOTs are rapidly emerging as one of the architectures of choice for label-free biosensing for their outstanding capability of amplification of small biological signals, operating at low voltages, and with a low-cost fabrication. As their inorganic counterpart, they are three-terminal devices, comprising source and drain electrodes connected by the organic semiconductor (OSC), and a third gate electrode, connected to the OSC through the electrolyte. The gate electrode is capacitively coupled to the OSC, therefore a potential application at the gate electrode leads to the formation of a first electrical double layer (EDL) at the gate/electrolyte interface, which induces the formation of a second EDL at the OSC/electrolyte interface, tunning the transistor electrical performance. The aim of this thesis is the development of individual EGOT-based biosensors for three aging biomarkers: Interleukin 6 (IL-6), Interleukin 1β (IL-1β), and anti-CMV antibodies. To this end, two EGOT architectures were explored, Organic Electrochemical Transistors (OECTs) and Electrolyte-Gated Field Effect Transistors (EGOFETs) as biosensors, which differ in the permeability of the OSC to ions penetration, and both working as potentiometric biosensors. In order to use EGOTs as biosensors, they were endowed with biorecognition capabilities by immobilizing biorecognition elements (e.g., antibodies) on the gate electrode. Consequently, the biorecognition event at the gate/electrolyte interface is transduced and amplified into a change in the drain current. During this thesis, different gate functionalization strategies were studied, optimized, and validated with complementary techniques, such as Electrochemical Impedance Spectroscopy (EIS) and Surface Plasmon Resonance (SPR). We demonstrated the detection of these biomarkers in the physio-pathological range, exploiting EGOT-based biosensors not only as a sensing tool but also for investigating the biorecognition phenomena occurring at the gate/electrolyte interface. Additionally, the integration of these devices with microfluidics led to the real-time monitoring of proteins. Finally, an alternative architecture was explored, based on an Extended-Gate OECT (EG-OECT), with the aim of reducing nonspecific response and to integrate these individual biosensors into one single platform for the simultaneous detection of several proteins in real samples. This work set the basis for the development of multiplexing sensing platforms based on EGOT architectures, with the final aim to implement it at the point-of-care.
Detection of Aging Biomarkers with Organic Electronics
21-nov-2023
BORTOLOTTI, Carlo Augusto
File in questo prodotto:
File Dimensione Formato  
Thesis_PManco_MRM XXXV.pdf

Open access

Descrizione: Tesi definitiva Manco Urbina Pamela Allison
Tipologia: Tesi di dottorato
Dimensione 4.79 MB
Formato Adobe PDF
4.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1327327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact