Our aim in this paper is to study a perturbation of the Cahn–Hilliard equation with nonlinear terms of logarithmic type. This new model is based on an unconstrained theory recently proposed in [5]. We prove the existence, regularity and uniqueness of solutions, as well as (strong) separation properties of the solutions from the pure states, also in three space dimensions. We finally prove the convergence to the Cahn–Hilliard equation, on finite time intervals.

A perturbation of the Cahn–Hilliard equation with logarithmic nonlinearity / Conti, Monica; Gatti, Stefania; Miranville, Alain. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 382:(2024), pp. 50-76. [10.1016/j.jde.2023.11.013]

A perturbation of the Cahn–Hilliard equation with logarithmic nonlinearity

Conti, Monica;Gatti, Stefania;Miranville, Alain
2024

Abstract

Our aim in this paper is to study a perturbation of the Cahn–Hilliard equation with nonlinear terms of logarithmic type. This new model is based on an unconstrained theory recently proposed in [5]. We prove the existence, regularity and uniqueness of solutions, as well as (strong) separation properties of the solutions from the pure states, also in three space dimensions. We finally prove the convergence to the Cahn–Hilliard equation, on finite time intervals.
2024
17-nov-2023
382
50
76
A perturbation of the Cahn–Hilliard equation with logarithmic nonlinearity / Conti, Monica; Gatti, Stefania; Miranville, Alain. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 382:(2024), pp. 50-76. [10.1016/j.jde.2023.11.013]
Conti, Monica; Gatti, Stefania; Miranville, Alain
File in questo prodotto:
File Dimensione Formato  
CGM_AC-CH.pdf

Open access

Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 389.56 kB
Formato Adobe PDF
389.56 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1327028
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact