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A PERTURBATION OF THE CAHN–HILLIARD EQUATION WITH
LOGARITHMIC NONLINEARITY

MONICA CONTI1, STEFANIA GATTI2 AND ALAIN MIRANVILLE3,4

Abstract. Our aim in this paper is to study a perturbation of the Cahn–Hilliard equa-
tion with nonlinear terms of logarithmic type. This new model is based on an un-
constrained theory recently proposed in [5]. We prove the existence, regularity and
uniqueness of solutions, as well as (strong) separation properties of the solutions from
the pure states, also in three space dimensions. We finally prove the convergence to the
Cahn–Hilliard equation, on finite time intervals.

1. Introduction

The Cahn–Hilliard equation,

ϕt + ∆2ϕ−∆Ψ′(ϕ) = 0,

is one of the most popular equations in the literature. Initially proposed by Cahn and
Hilliard in [2] and [3] in order to describe phase separation processes in binary alloys, it
was then employed, possibly with an additional source term, in many different situations,
including astronomy and ecology. We refer the interested reader to, e.g., [15], [17] and
references therein.

Very often, the potential Ψ is taken polynomial, typically,

Ψ(s) =
1

4
(s2 − 1)2, s ∈ R.

In that case, the equation is very well understood from a mathematical point of view and
one has, in particular, a complete and satisfactory picture concerning the well-posedness,
regularity of solutions and asymptotic behavior of the associated dynamical system (ex-
istence of finite-dimensional attractors and convergence of single trajectories to steady
states); see, e.g., [15] and the numerous references therein. However, as already men-
tioned in [2], the thermodynamically relevant potential Ψ should be logarithmic,

Ψ(s) =
θ

2

(
(1 + s) ln(1 + s) + (1− s) ln(1− s)

)
− θ0

2
s2, 0 < θ < θ0, s ∈ (−1, 1).

It is important to note that, in that case, the equation only makes sense for ϕ ∈ (−1, 1)
a.e., meaning, roughly speaking, that, during the phase separation process, one never
completely reaches the pure states, but always has at least one trace of the other com-
ponent. One can indeed prove such a separation property from the pure states (see, e.g.,
[15] once more), allowing then to again prove the well-posedness, regularity of solutions,

2010 Mathematics Subject Classification. 35K55, 35B45.
Key words and phrases. Cahn–Hilliard equation, perturbation, logarithmic nonlinear terms, well-

posedness, strict separation property, convergence to the Cahn–Hilliard equation.
1



2 M. CONTI, S. GATTI, A. MIRANVILLE

existence of finite dimensional attractors and convergence of solutions to steady states
(see, e.g., [1], [15] and [18]). Another important property of the equation is known as the
strict separation property (here on a time interval I),

|ϕ(x, t)| ≤ 1− δ, for all (x, t) ∈ Ω× I,

where Ω is the spatial domain occupied by the system, meaning, roughly speaking, that
not only one never completely reaches the pure states, but there always remains some
given quantity of the other component. This property was proved in one and two space
dimensions in [18], for I = (σ,+∞), ∀σ > 0. In three space dimensions, such a property
is not known, unless one makes growth assumptions on Ψ close to the pure states ±1 that
are not satisfied by the above logarithmic potentials. However, it follows from the results
in [1], that this property holds asymptotically, in the sense that it holds for I = (T,+∞),
where T > 0 depends on the initial datum and cannot be estimated, contrary to what we
have in one and two space dimensions.

In [19], Novick–Cohen proposed the following variant of the Cahn–Hilliard equation,
called viscous Cahn–Hilliard equation:

ϕt − ε∆ϕt + ∆2ϕ−∆Ψ′(ϕ) = 0, ε > 0,

in order to account for viscosity effects in mixtures of polymers. It is proved in [18] that
this perturbation of the Cahn–Hilliard equation enjoys the strict separation property in
three space dimensions, although this property is uniform with respect to ε → 0 only in
one and two space dimensions.

The viscous Cahn–Hilliard equation is also a particular instance of the generalized
Cahn–Hilliard equations proposed by Gurtin in [13] and based on a microforce balance
(following [8] and [9]), i.e., a separate balance law for forces at a microscopic level, leading
to a scalar phase field. This approach is further considered in [5], based also on internal
constraints. More precisely, when considering a constrained theory, i.e., assuming that
the concentration is constrained to be equal to the order parameter, one finds the Cahn–
Hilliard equation. The unconstrained theory leads to the following system of equations:

∂c

∂t
= ∆(Ψ′(ϕ)−∆ϕ),

c = ϕ+ ε(Ψ′(ϕ)−∆ϕ), ε > 0,

where c is the concentration. Introducing the chemical potential

µ =
1

ε
(c− ϕ),

we end up with the system of equations

ϕt = ∆µ− εµt,

µ = −∆ϕ+ Ψ′(ϕ).

Note that, when ε = 0, we recover the Cahn–Hilliard equation. These equations were
studied in [16], for a polynomial potential Ψ as above. In particular, there, the well-
posedness, regularity of solutions and convergence to the Cahn–Hilliard equation on finite
time intervals were obtained.
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We also mention a related model proposed in [6] and based on microconstraints. This
model was studied in [7], again for a polynomial potential.

Our aim in this paper is to study the model in [5], now with logarithmic (actually,
slightly more general) potentials. For such potentials, we recover the same results as
those obtained in [16]. Furthermore, a special attention is devoted to the strict separation
property that also holds in three space dimensions, as it is the case for the viscous Cahn–
Hilliard equation. However, again, in that case, this property is not uniform with respect
to ε→ 0, contrary to what we have in two space dimensions.

Plan of the paper. In Section 2, after setting the problem in a rigorous way, we introduce
the assumptions that are used throughout the paper and recall some mathematical tools
that are needed for our analysis (see also Appendix 8 on a related elliptic problem). In
Section 3, we perform several energy estimates, depending on ε. Then, we show the
existence and uniqueness of weak and strong solutions in the subsequent Section 4. The
proof of the separation property in three space dimensions is given in Section 5. Section 6
is devoted to the derivation of energy estimates that are independent of ε, therein applied
to prove a uniform version of the separation property in two space dimensions. In the
last Section 7, we prove the convergence of the model to the classical Cahn–Hilliard one
when ε→ 0 and provide some quantitative error estimates.

2. Setting of the problem

We consider the following equations, in a bounded and regular domain Ω of Rd, d = 2 or
3, with smooth boundary ∂Ω:{

ϕt = ∆µ− εµt,
µ = −∆ϕ+ Ψ′(ϕ),

in Ω× (0, T ), (2.1)

completed with the boundary conditions

∂nϕ = ∂nµ = 0, on ∂Ω× (0, T ), (2.2)

n being the exterior normal on ∂Ω, and the initial condition

ϕ(0) = ϕ0, in Ω. (2.3)

Setting
w = ϕ+ εµ,

we rewrite the problem as{
εwt −∆w = −∆ϕ,

w = −ε∆ϕ+ εΨ′(ϕ) + ϕ,
in Ω× (0, T ), (2.4)

completed with the boundary conditions

∂nϕ = ∂nw = 0, on ∂Ω× (0, T ), (2.5)

and the initial condition

w(0) = ϕ0 + εµ0, in Ω, (2.6)

having set µ0 = −∆ϕ0 + Ψ′(ϕ0).
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Remark 2.1. It is important to remark that, contrary to the Cahn-Hilliard equation
corresponding to ε = 0, here for the ε-perturbed model the mass conservation property
of ϕ does not hold, namely,

〈ϕ(t)〉 6= 〈ϕ0〉, ∀ t ≥ 0,

where we denote by 〈f〉 the average of f over Ω (see the subsequent (2.12)). Nonetheless,
the mass of w in (2.4) is preserved by the evolution, that is,

〈w(t)〉 ≡ 〈w0〉, ∀ t ≥ 0. (2.7)

Preliminaries. We setH = L2(Ω) with inner product denoted by (·, ·) and corresponding
norm ‖ · ‖. For the standard Sobolev spaces, we use the notation Hk = W k,2(Ω). We also
set V = H1(Ω) and denote by V ′ its dual space, with corresponding duality product 〈·, ·〉.

Throughout this paper, with the same letter C, we denote a positive constant which
may vary from line to line. Specific dependencies will be pointed out when necessary.

Assumptions. We formulate the standing assumptions on the potential Ψ and on the
parameter ε that hold true throughout the paper.

We assume that Ψ is a quadratic perturbation of a singular (strictly) convex function
in [−1, 1]. Namely,

Ψ(s) = F (s)− θ0

2
s2,

where the convex part F belongs to C([−1, 1]) ∩ C2(−1, 1), and fulfills

lim
s→−1

F ′(s) = −∞, lim
s→1

F ′(s) = +∞, F ′′(s) ≥ θ, ∀ s ∈ (−1, 1),

for some θ > 0. Here, we study the physical case of double-well (singular) potentials,
namely, we assume

θ0 > θ.

We also extend F (s) = +∞ for any s /∈ [−1, 1]. Note that the above assumptions imply
that there exists s0 ∈ (−1, 1) such that F ′(s0) = 0. Without loss of generality, we assume
that s0 = 0 and that F (s0) = 0 as well, namely,

F (0) = F ′(0) = 0.

In particular, this entails that F (s) ≥ 0 for all s ∈ [−1, 1] and F ′(s)s ≥ 0.

Remark 2.2. The assumptions are satisfied and motivated by the logarithmic potential

Ψ(s) =
θ

2

(
(1 + s) ln(1 + s) + (1− s) ln(1− s)

)
− θ0

2
s2, ∀s ∈ (−1, 1).

Concerning the parameter ε, we assume that ε ∈ (0, ε0), where ε0 > 0 satisfies

ε0 <
1

θ0

. (2.8)
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Regularity results for the singular elliptic problem. An important role in the
analysis of the model is played by the elliptic problem with the homogeneous Neumann
boundary conditions, {

−∆u+ F ′(u) = f, in Ω,

∂nu = 0, on ∂Ω,
(2.9)

where F is a singular potential satisfying all the assumptions above and f ∈ H.

Let u be a solution to (2.9) such that u ∈ H2 with F ′(u) ∈ H, ∂nu = 0 on ∂Ω and u
satisfies −∆u + F ′(u) = f for a.e. x ∈ Ω. Note that, in particular, ‖u‖L∞(Ω) ≤ 1 (see
Section 8). We report here some useful results from [4, Appendix A], concerning further
regularity properties of u and F ′(u).

Lemma 2.3. Let d = 2, 3. Then the following hold true:

(i) If f ∈ Lp(Ω) with 2 ≤ p ≤ ∞, then

‖F ′(u)‖Lp(Ω) ≤ ‖f‖Lp(Ω).

(ii) If f ∈ V , there exists C = C(p) > 0 such that

‖u‖W 2,p(Ω) + ‖F ′(u)‖Lp(Ω) ≤ C
(
1 + ‖f‖V

)
,

where p = 6 if d = 3 and for any finite p ≥ 2 if d = 2.

In dimension d = 2, one usually obtains information on the regularity of F ′′ under the
following additional condition on the potential: there exists a positive constant C such
that

F ′′(s) ≤ eC|F
′(s)|+C , ∀s ∈ (−1, 1), (2.10)

which is in particular satisfied by the logarithmic potentials. Indeed, based on the
Trudinger-Moser inequality, the following result holds true (see [4, Lemma A.2]).

Lemma 2.4. Let d = 2 and let F satisfy (2.10). Then, for any p ≥ 2, there exists a
positive constant C = C(p) such that

‖F ′′(u)‖pLp(Ω) ≤ C
(

1 + eC‖f‖
2
V

)
.

Moreover, we have the following very recent result [14, Lemma 3.2], see also [11].

Lemma 2.5. Let d = 2 and (2.10) be in place. If f ∈ V , then

‖F ′(u)‖L∞(Ω) ≤ C,

for some C > 0 depending only on ‖f‖V .

Proof. By Lemma 2.3 we know that u ∈ W 2,p(Ω) and F ′(u) ∈ Lp(Ω) for every p ≥ 2.
Besides, F ′′(u) ∈ Lp(Ω) in light of Lemma 2.4. Now observe that1 ∇F ′(u) = F ′′(u)∇u,
hence ∫

Ω

|∇F ′(u)|3 ≤
(∫

Ω

|F ′′(u)|6
)1/2(∫

Ω

|∇u|6
)1/2

≤ C.

This tells that F ′(u) ∈ W 1,3(Ω). By the two dimensional Sobolev embedding W 1,3(Ω) ⊂
L∞(Ω) ∩ C(Ω) the result follows. �

1This can be proven by a standard limiting procedure involving suitable cut-off functions for u.
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Polynomial approximation of the singular potential. Let us recall some results in
[10] concerning the existence of a sequence of regular functions Fλ which approximate the
singular potential F . More precisely, there exists a family

Fλ : R→ R
(λ > 0) such that Fλ(0) = F ′λ(0) = 0 and

(i) Fλ is convex with F ′′λ (s) ≥ 0 for all s ∈ R,
(ii) F ′λ is Lipschitz continuous on R with constant 1

λ
,

(iii) there exist 0 < λ ≤ 1 and C > 0 such that Fλ(s) ≥ θ0s
2−C, ∀ s ∈ R, ∀λ ∈ (0, λ],

(iv) Fλ(s) ↗ F (s), for all s ∈ R, |F ′λ(s)| ↗ |F ′(s)| for s ∈ (−1, 1) and F ′λ converges
uniformly to F ′ on any set [a, b] ⊂ (−1, 1).

For any λ > 0 we introduce the quadratic perturbation of Fλ by

Ψλ(s) = Fλ(s)−
θ0

2
s2. (2.11)

Note that
Ψ′′λ(s) ≥ −θ0, Ψ′λ(s)s ≥ −θ0s

2.

Zero-mean functions. We denote by 〈f〉 the average of f over Ω, that is,

〈f〉 = |Ω|−1〈f, 1〉, (2.12)

for all f in the dual space V ′. Then, we introduce the space of zero-mean functions
V0 = {f ∈ V : 〈f〉 = 0} and its dual space V ′0 = {g ∈ V ′ : 〈g, 1〉 = 0}. We consider the
operator A ∈ L(V, V ′) defined by

〈Af, v〉 =

∫
Ω

∇f · ∇v dx, ∀ f, v ∈ V.

Since the restriction of A to V0 is an isomorphism from V0 onto V ′0 , we define the inverse
map N : V ′0 → V0. It is well-known that for all g ∈ V ′0 , N g is the unique f ∈ V0

such that 〈Af, v〉 = 〈g, v〉, for all v ∈ V . On account of the above definitions, we have
〈Af,N g〉 = 〈g, f〉, for all f ∈ V and g ∈ V ′0 . It turns out that f → ‖f‖] = ‖∇N f‖
and f → ‖f‖∗ = (‖f − 〈f〉‖2

] + |〈f〉|2)
1
2 are norms on V ′0 and V ′, respectively, that are

equivalent to the standard ones. We also recall the Poincaré type inequality

‖f − 〈f〉‖ ≤ C‖∇f‖, ∀f ∈ V
and the following chain rule:

1

2

d

dt
‖f(t)‖2

] = 〈∂tf(t),N f(t)〉 , for a.e. t ∈ (0, T ), ∀ f ∈ H1(0, T ;V ′0).

3. Energy estimates (depending on ε)

Let ε > 0 complying with (2.8) be fixed. We consider the λ-family of regularized systems
corresponding to (2.4) obtained by replacing the singular potential Ψ with the regular
approximations Ψλ as in (2.11), namely,{

εwt −∆w = −∆ϕ,

w = −ε∆ϕ+ εΨ′λ(ϕ) + ϕ,
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with the same boundary conditions and initial datum

w0 ∈ H
arbitrarily chosen. Let us denote this problem by (2.4)λ. In this section we perform
several energy estimates2 that are independent of λ. To this aim, let us simply denote by
(w,ϕ) the solution to (2.4)λ, neglecting dependence on λ.

Multiplying the second equation of (2.4)λ by ϕ we get

(w,ϕ) = ε‖∇ϕ‖2 + ε(Ψ′λ(ϕ), ϕ) + ‖ϕ‖2.

Exploiting the inequality

(Ψ′λ(ϕ), ϕ) ≥ −θ0‖ϕ‖2,

it turns out that

ε(Ψ′λ(ϕ)ϕ, ϕ) + ‖ϕ‖2 ≥ (1− εθ0)‖ϕ‖2 = 2c1‖ϕ‖2,

where

c1 :=
1− εθ0

2
> 0,

owing to the constraint (2.8). By the estimate |(w,ϕ)| ≤ c1‖ϕ‖2 + 1
4c1
‖w‖2, we end up

with

ε‖∇ϕ‖2 + c1‖ϕ‖2 ≤ 1

4c1

‖w‖2. (3.1)

Now test the first equation of (2.4)λ by w, so obtaining

ε

2

d

dt
‖w‖2 + ‖∇w‖2 = (∇ϕ,∇w) ≤ 1

2
‖∇ϕ‖2 +

1

2
‖∇w‖2,

hence

ε
d

dt
‖w‖2 + ‖∇w‖2 ≤ ‖∇ϕ‖2.

Exploiting (3.1), we arrive at

ε
d

dt
‖w‖2 + ‖∇w‖2 ≤ 1

4c1ε
‖w‖2,

hence the Gronwall lemma, together with w0 ∈ H, gives

w ∈ L∞(0, T ;H) ∩ L2(0, T ;V ),

with bounds of the norms that do not depend on λ.

Finally, multiplying the second equation of (2.4)λ by −∆ϕ we have

−(w,∆ϕ) = ε‖∆ϕ‖2 + ε(Ψ′′λ(ϕ)∇ϕ,∇ϕ) + ‖∇ϕ‖2.

Using the property

(Ψ′′λ(ϕ)∇ϕ,∇ϕ) ≥ −θ0‖∇ϕ‖2,

it turns out that

ε(Ψ′′λ(ϕ)∇ϕ,∇ϕ) + ‖∇ϕ‖2 ≥ 2c1‖∇ϕ‖2.

2that are properly justified within a suitable Galerkin scheme.
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Since |(w,∆ϕ)| ≤ ε
2
‖∆ϕ‖2 + 1

2ε
‖w‖2, we obtain

ε‖∆ϕ‖2 + 4c1‖∇ϕ‖2 ≤ 1

ε
‖w‖2. (3.2)

In conclusion, we have proved that

ϕ ∈ L∞(0, T ;H2),

with an estimate that is independent of λ.

We proceed by looking for estimates on the time-derivatives of ϕ and w. We immedi-
ately get by comparison in the first equation that

wt ∈ L2(0, T ;V ′). (3.3)

Then, differentiating the second equation with respect to time and multiplying by ϕt we
find

〈wt, ϕt〉 = ε‖∇ϕt‖2 + (εΨ′′λ(ϕ)ϕt, ϕt) + ‖ϕt‖2 ≥ ε‖∇ϕt‖2 + 2c1‖ϕt‖2.

Note that

〈wt, ϕt〉 = 〈Aϕt,Nwt〉 = (∇Nwt,∇ϕt) ≤ ‖wt‖]‖∇ϕt‖ ≤
ε

2
‖∇ϕt‖2 +

1

2ε
‖wt‖2

] .

We thus obtain

ε‖∇ϕt‖2 + 4c1‖ϕt‖2 ≤ 1

ε
‖wt‖2

V ′ ,

giving the bound

ϕt ∈ L2(0, T ;V ),

uniformly in λ, in light of (3.3).

Based on the above a priori estimates and a proper Galerkin scheme, exploiting the
global Lipschitz continuity of Ψ′λ, it is possible to prove the existence of a (unique) weak
solution (wλ, ϕλ) to each approximating problem (2.4)λ, satisfying

〈ε∂twλ, v〉+ (∇wλ,∇v)− (∇ϕλ,∇v) = 0, ∀ v ∈ V,

where wλ = −ε∆ϕλ + εΨ′λ(ϕλ) + ϕλ a.e. (x, t) ∈ Ω× (0, T ), and

‖wλ‖L∞(0,T ;H) + ‖wλ‖L2(0,T ;V ) ≤ C,

‖ϕλ‖L∞(0,T ;H2) ≤ C,

‖∂twλ‖L2(0,T ;V ′) + ‖∂tϕλ‖L2(0,T ;V ) ≤ C,

for some C > 0 independent of λ. It is nonetheless apparent from the computations above
that C depends on ε, and C → ∞ as ε → 0. Furthermore, by comparison in the second
equation of (2.4)λ we also have the uniform estimate

‖F ′λ(ϕλ)‖L∞(0,T ;H) ≤ C. (3.4)

We omit the proof of the existence, that is essentially contained in [16]; see also Section
8 for the Galerkin scheme and the next section for the passage to the limit.
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4. Well-posedness

Our aim in this section is to show the well-posedness of the model, for any given ε > 0
complying with (2.8). We start from equation (2.4).

Theorem 4.1. Let ε ∈ (0, ε0) and let w0 ∈ H. Given T > 0, there exists a unique weak
solution (w,ϕ) on [0, T ] to (2.4)-(2.5) with initial condition w(0) = w0 in the following
sense:

w ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), wt ∈ L2(0, T ;V ′),

ϕ ∈ L∞(0, T ;H2), ϕt ∈ L2(0, T ;V ),

F ′(ϕ) ∈ L∞(0, T ;H),

with

|ϕ(x, t)| < 1 a.e. (x, t) ∈ Ω× (0, T ).

Besides,

〈εwt, v〉+ (∇w,∇v)− (∇ϕ,∇v) = 0, ∀ v ∈ V, (4.1)

for almost every t ∈ (0, T ), and

w = −ε∆ϕ+ εΨ′(ϕ) + ϕ

holds for a.a. (x, t) ∈ Ω× (0, T ). Moreover, ∂nϕ = 0 a.e. on ∂Ω× (0, T ) and w(0) = w0

a.e. in Ω.

Remark 4.2 (Continuity of the solution). By a classical Lions–Magenes result we see
that w ∈ C([0, T ], H). Besides, from the Aubin-Simon theorem, ϕ ∈ C([0, T ], H2−δ) for
every δ > 0, and by the Strauss lemma, ϕ ∈ C([0, T ], H2

w). In particular, it turns out that
ϕ ∈ C(Ω× [0, T ]).

Remark 4.3 (Initial conditions). Note that, besides w(0) = w0 for a.a. x ∈ Ω, we also
have ϕ(0) = ϕ0, where ϕ0 is the unique solution to the Neumann problem

−ε∆u+ εΨ′(u) + u = f, ∂nu|∂Ω = 0,

in the Appendix with f = w0 ∈ H, satisfying all the properties therein. In particular,
ϕ0 ∈ H2 and |ϕ0(x)| < 1 a.e. x ∈ Ω, or, equivalently, |〈ϕ0〉| < 1.

Proof of Theorem 4.1.

Existence. For λ > 0 let (wλ, ϕλ) be a solution to the approximated problem (2.4)λ. In
light of the uniform (with respect to λ) estimates in Section 3, we can pass to the limit
λ→ 0 on any interval [0, T ], T > 0, with the following convergences (up to subsequences):
ϕλ → ϕ weakly star in L∞(0, T ;H2),
wλ → w weakly star in L∞(0, T ;H) and weakly in L2(0, T ;V ),
∂tϕλ → ∂tϕ weakly in L2(0, T ;V ),
∂twλ → ∂tw weakly in L2(0, T ;V ′).

By Aubin-Lions theorem, we also deduce that ϕλ → ϕ in L2(0, T ;V ) ∩ C([0, T ], H), and
ϕλ(x, t)→ ϕ(x, t) almost everywhere in Ω× (0, T ).

We claim that the limit (w,ϕ) is a weak solution according to Theorem 4.1. Indeed,
the required regularity immediately follows by the above convergences. The boundedness
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of ϕ can be proved by a standard argument as follows. For any fixed η ∈ (0, 1/2) we
introduce the set

Eλ
η = {(x, t) ∈ Ω× [0, T ] : |ϕλ(x, t)| > 1− η} .

It is easy to see from (3.4) that

|Eλ
η | ≤

C

min{F ′λ(1− η), |F ′λ(−1 + η)|}
.

Passing to the limit as λ→ 0 and η → 0, we have | {(x, t) ∈ Ω× (0, T ) : |ϕ(x, t)| ≥ 1} | =
0, meaning that ϕ ∈ L∞(Ω× (0, T )), with |ϕ(x, t)| < 1 for a.a. (x, t) ∈ Ω× (0, T ).

This allows to handle the nonlinear potential. Indeed, using the pointwise convergence
of ϕλ and the uniform convergence of F ′λ to F ′ on any compact set in (−1, 1), we infer
that F ′λ(ϕλ) → F ′(ϕ), for almost every (x, t) ∈ Ω × (0, T ). Then, in light of (3.4), a
weak form of the Lebesgue convergence theorem implies that F ′λ(ϕλ)→ F ′(ϕ) weakly in
L2(0, T ;H), which allows us to identify w in L∞(0,∞;H) as w = −ε∆ϕ+ εΨ′(ϕ) +ϕ. In
a standard way, we now pass to the limit in the weak formulation of (2.4)λ, proving the
validity of (4.1).

Uniqueness. Set w = w1 − w2 and ϕ = ϕ1 − ϕ2, where (wi, ϕi) is a solution departing
from the initial data wi0, i = 1, 2. Then, we have

ε〈wt, v〉+ (∇w,∇v) = (∇ϕ,∇v), ∀v ∈ V,
where

w = −ε∆ϕ+ ε[Ψ′(ϕ1)−Ψ′(ϕ2)] + ϕ, a.e. in Ω× (0, T ).

Testing the second equation by ϕ yields

(w,ϕ) = ε‖∇ϕ‖2 + ε(Ψ′(ϕ1)−Ψ′(ϕ2), ϕ) + ‖ϕ‖2.

Noting that
ε(Ψ′(ϕ1)−Ψ′(ϕ2), ϕ) + ‖ϕ‖2 ≥ 2c1‖ϕ‖2,

we end up with

ε‖∇ϕ‖2 + c1‖ϕ‖2 ≤ 1

4c1

‖w‖2. (4.2)

Testing the first equation by w gives

ε

2

d

dt
‖w‖2 + ‖∇w‖2 = (∇ϕ,∇w) ≤ 1

2
‖∇ϕ‖2 +

1

2
‖∇w‖2,

so that

ε
d

dt
‖w‖2 + ‖∇w‖2 ≤ ‖∇ϕ‖2 ≤ 1

4c1ε
‖w‖2.

Finally,
d

dt
‖w‖2 ≤ 1

4c1ε2
‖w‖2,

and the Gronwall lemma, together with (4.2), yields the continuous dependence estimate

‖w1(t)− w2(t)‖+
√
ε‖ϕ1(t)− ϕ2(t)‖V ≤ C‖w10 − w20‖, ∀t ∈ [0, T ],

where C depends on ε and T . In particular, if w10 = w20, then w1 = w2 and ϕ1 = ϕ2,
proving the uniqueness. �
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4.1. Strong solutions. If the initial datum is more regular, namely w0 ∈ V , we obtain
further regularity on the solution. Indeed, having in mind the regularization scheme of
Section 3, testing the first equation of (4.1) by −∆w we get

ε

2

d

dt
‖∇w‖2 + ‖∆w‖2 = (∆ϕ,∆w) ≤ 1

2
‖∆ϕ‖2 +

1

2
‖∆w‖2,

which, in light of (3.2), tells us that

ε
d

dt
‖∇w‖2 + ‖∆w‖2 ≤ 1

ε2
‖w‖2.

Therefore, the Gronwall lemma yields

w ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2),

and by comparison,

εwt = ∆w −∆ϕ ∈ L2(0, T ;H).

At this point, we can deduce further regularity properties of ϕ and F ′(ϕ) in light of
Lemma 2.3, observing that ϕ solves the homogeneous Neumann problem

−∆ϕ+ F ′(ϕ) = f, ∂nϕ|∂Ω = 0,

with

f =
1

ε
[w − ϕ+ εθ0ϕ].

Since f ∈ L∞(0, T ;V ), we immediately learn from Lemma 2.3 (ii) that

‖ϕ‖W 2,p(Ω) + ‖F ′(ϕ)‖Lp(Ω) ≤ C,

where p = 6 if d = 3 and for any finite p ≥ 2 if d = 2.

Summing up, we have

Theorem 4.4. Let ε ∈ (0, ε0) and let w0 ∈ V . Given T > 0, the unique solution (w,ϕ)
on [0, T ] to (2.4)-(2.5) with initial condition w(0) = w0 is strong in the following sense:

w ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2), wt ∈ L2(0, T ;H),

ϕ ∈ L∞(0, T ;W 2,p(Ω)), ϕt ∈ L2(0, T ;V ),

F ′(ϕ) ∈ L∞(0, T ;Lp(Ω)),

where p = 6 if d = 3 and any 2 ≤ p <∞ if d = 2. Moreover,

εwt −∆w + ∆ϕ = 0, a.e. in Ω× (0, T ),

and ∂nw = 0 a.e. on ∂Ω× (0, T ).
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4.2. Back to the original problem. Let us now go back to the original ε-model (2.1)-
(2.3). Regarding the initial condition ϕ(0) = ϕ0, we assume that ϕ0 is an admissible
datum. Namely, as it is done for the classical Cahn-Hilliard equation with singular po-
tential, we assume that

|ϕ0(x)| < 1 for a.a. x ∈ Ω.

Equivalently, ϕ0 ∈ L∞(Ω) with ‖ϕ0‖L∞(Ω) ≤ 1 and |〈ϕ0〉| < 1. Notice that such an
assumption prevents the admissibility of the pure states (i.e., ϕ ≡ 1 or ϕ ≡ −1) as initial
conditions.

The following well-posedness results hold.

Theorem 4.5. Let ϕ0 be an admissible datum. We assume that ϕ0 ∈ H2 with ∂nϕ0 = 0
a.e. on ∂Ω and

µ0 := −∆ϕ0 + Ψ′(ϕ0) ∈ H.
Given ε ∈ (0, ε0) and T > 0, there exists a unique weak solution (ϕ, µ) to (2.1)-(2.3) on
[0, T ] with

|ϕ(x, t)| < 1 for a.e. (x, t) ∈ Ω× (0, T ),

such that

ϕ ∈ L∞(0, T ;H2), ϕt ∈ L2(0, T ;V ),

F ′(ϕ) ∈ L∞(0, T ;H),

µ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), µt ∈ L2(0, T ;V ′),

and

(ϕt, v) + (∇µ,∇v) + 〈εµt, v〉 = 0, ∀ v ∈ V,
for almost every t ∈ (0, T ), where

µ = −∆ϕ+ Ψ′(ϕ)

holds a.e. (x, t) ∈ Ω × (0, T ). Besides, ∂nϕ = 0 a.e. on ∂Ω × (0, T ) and ϕ(0) = ϕ0 a.e.
in Ω.

When the datum is more regular, namely, µ0 ∈ V , then the solution is strong according
to the next theorem.

Theorem 4.6. Let the assumptions of Theorem 4.5 be in place, and assume that µ0 ∈ V .
Then, the solution (ϕ, µ) to (2.1)-(2.3) on [0, T ] is strong, in the sense that

ϕ ∈ L∞(0, T ;W 2,p(Ω)), ϕt ∈ L2(0, T ;V ),

F ′(ϕ) ∈ L∞(0, T ;Lp(Ω)),

µ ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2), µt ∈ L2(0, T ;H),

where p = 6 if d = 3 and any 2 ≤ p <∞ if d = 2. Besides, the solution satisfies

ϕt −∆µ+ εµt = 0, a.e. in Ω× (0, T ),

and ∂nµ = 0 a.e. on ∂Ω× (0, T ).
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Indeed, it is enough to take the unique solution (w,ϕ) to the boundary value problem
(2.4)-(2.5) with initial datum w(0) = w0 given by

w0 = ϕ0 + εµ0,

as in (2.6). Then, in light of Theorem 4.1 and Theorem 4.4, the pair (ϕ, µ) with

µ =
1

ε
(w − ϕ)

has all the required properties, depending on whether w0 ∈ H or w0 ∈ V . As a matter
of fact, in light of Remark 4.3, the boundary value problems (2.1)-(2.3) and (2.4)-(2.6),
when endowed with a suitable initial condition as above, are completely equivalent.

We conclude the section by stressing once again that all the norm-bounds obtained so
far depend on ε, growing indefinitely as ε→ 0.

5. Separation property

We recall the following definition.

Strict separation property in the time interval I. There exists δ > 0 such that

|ϕ(x, t)| ≤ 1− δ, for all (x, t) ∈ Ω× I. (5.1)

For the classical Cahn–Hilliard equation (7.1) (see, e.g., [15]), such a property is well-
known to be true in dimension d = 2 under the additional condition (2.10) on the growth
of the singular potential at ±1. Nonetheless, in dimension three, the validity of (5.1) is
still an important open issue.

One of the main results of the paper is that for the ε-perturbation (2.1)-(2.3) of the
classical Cahn–Hilliard system, the strict separation property from the pure state holds
true even when d = 3, and without any extra assumption on the singular potential. More
precisely, we have the following.

Theorem 5.1. Let d = 3, ε ∈ (0, ε0) be fixed and let (ϕ, µ) be a strong solution to (2.1)-
(2.3) according to Theorem 4.6. Then, ϕ satisfies property (5.1) on any time interval
I = [σ, T ], 0 < σ < T .

Proof. Take any initial datum (ϕ0, µ0) complying with the assumptions of Theorem 4.6
and consider the corresponding strong solution (ϕ, µ) to (2.1)-(2.3) on [0, T ].

Setting w = ϕ+εµ, then (w,ϕ) is a strong solution to (2.4)-(2.6), satisfying in particular
εwt −∆w = −∆ϕ, almost everywhere. Differentiating this equality with respect to t, we
find3

εwtt −∆wt = −∆ϕt,

that we test by wt to get

ε

2

d

dt
‖wt‖2 + ‖∇wt‖2 = (∇ϕt,∇wt).

3Actually, the following computations are only formal, but one can make them rigorous by working
with the finite differences ∂h

t w(t) := 1
h [w(t + h)− w(t)] for any h 6= 0, see, e.g., [4] and [12].
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This yields the differential inequality

ε
d

dt
‖wt‖2 + ‖∇wt‖2 ≤ ‖∇ϕt‖2.

It is apparent from Theorem 4.4 that there exists C > 0, depending on T and ε, such
that

‖wt‖L2(t,t+σ;H) ≤ C, ‖∇ϕt‖L2(t,t+σ;H) ≤ C, (5.2)

for all t ∈ [0, T ], and any σ ∈ (0, T ). Therefore, we can apply the uniform Gronwall
lemma, yielding

‖wt‖L∞(σ,T ;H) ≤ C, (5.3)

for some C > 0 depending on σ, T and ε via the estimates (5.2). By comparison in the
first equation (written as wt = ∆µ), we learn that µ ∈ L∞(σ, T ;H2), implying in turn
that µ ∈ L∞(Ω× (σ, T )).

Now recall that ϕ solves the Neumann problem (2.9) with f = µ+ θ0ϕ. Having proved
that f ∈ L∞(Ω× (σ, T )), part (i) of Lemma 2.3 with p =∞ ensures that

‖F ′(ϕ)‖L∞(Ω×(σ,T )) ≤ C.

Since F ′ diverges at ±1 and ϕ ∈ C(Ω × [0, T ]), we immediately deduce the existence of
δ > 0 complying with (5.1) in I = [σ, T ]. �

It is apparent form the proof that the separation parameter δ in (5.1) depends on ε
through (5.2) and (5.3), hence it deteriorates to 0 as ε → 0. Besides, it depends on the
size of the initial data and on the specific form of F .

Remark 5.2. In the light of the strict separation property, one can say more about the
regularity of ϕ for strong solutions. Indeed, the singular potential F becomes regular on
the interval [−1 + δ, 1− δ]. As a consequence, reasoning as in [16], for F ∈ C3(−1, 1) one
obtains ϕ ∈ L∞(0,∞;H3).

6. Uniform (in ε) energy estimates

As already observed, the norm-bounds obtained so far depend on ε. Having in mind
to study the limit ε → 0, a crucial goal is to derive a number of estimates that are
independent of ε. To this aim, let ε ∈ (0, ε0) complying with (2.8). According to Theorem
4.6, we consider problem (2.1) with homogeneous Neumann boundary conditions for ϕ
and µ and initial datum ϕ(0) = ϕ0 satisfying the assumption therein. In particular,

µ0 ∈ V.

Along the section, we denote by (ϕ, µ) the corresponding unique strong solution, omitting
for simplicity the superscript ε. The generic positive constant C appearing in the following
computations may depend on ε0 but is independent of ε.

Basic estimate. We introduce the energy of the solution as

Eϕ0(t) = ‖∇ϕ(t)‖2 + ε‖µ(t)‖2 + 2

∫
Ω

Ψ(ϕ(t))dx.
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Multiplying the first equation in (2.1) by µ and the second one by ϕt, we see that

d

dt
Eϕ0(t) + 2‖∇µ(t)‖2 = 0.

Recalling that |ϕ| < 1 almost everywhere, we easily deduce from this differential equality
that

∇ϕ ∈ L∞(0,∞;H),
√
εµ ∈ L∞(0,∞;H), ∇µ ∈ L2(0,∞;H). (6.1)

In turn, since ‖ϕ‖L∞(Ω) ≤ 1, this tells us that

ϕ ∈ L∞(0,∞;V ), (6.2)

with a bound on the norm that is independent of ε.

Uniform control of 〈ϕ〉. This is a key point, since the mean of ϕ is not conserved
during the evolution. Nonetheless, we have the conservation law (see (2.7))

〈ϕ(t) + εµ(t)〉 = 〈ϕ0 + εµ0〉, ∀t ≥ 0.

By the uniform estimate
√
εµ ∈ L∞(0,∞;H), we obtain

|〈
√
εµ〉| ≤ C

∫
Ω

√
ε|µ| ≤ C

(∫
Ω

ε|µ|2
)1/2

≤ C.

Therefore, writing

〈ϕ(t)〉 = −
√
ε〈
√
εµ(t)〉+ 〈ϕ0 + εµ0〉, (6.3)

we easily see that

〈ϕ(t)〉 → 〈ϕ0〉, ε→ 0

uniformly in [0,∞).

Now observe that, since |〈ϕ0〉| < 1, then 〈ϕ0〉 ∈ (−1 + 2δ, 1 − 2δ) for some δ > 0.
Therefore, there exists ε̃ > 0 (we assume that ε̃ < ε0), depending on δ, such that

〈ϕ(t)〉 ∈ (−1 + δ, 1− δ), ∀t ≥ 0, ∀ε ∈ (0, ε̃). (6.4)

Uniform estimates for ϕt and µt. We test the first equation in (2.1) by µt, finding

−(ϕt, µt) =
1

2

d

dt
‖∇µ‖2 + ε‖µt‖2.

Then, differentiating the second equation, we have4

µt = −∆ϕt + Ψ′′(ϕ)ϕt,

and multiplying by ϕt, we get

(µt, ϕt) = ‖∇ϕt‖2 + 〈Ψ′′(ϕ)ϕt, ϕt〉.
This yields

1

2

d

dt
‖∇µ‖2 + ε‖µt‖2 + ‖∇ϕt‖2 = −〈Ψ′′(ϕ)ϕt, ϕt〉 ≤ θ0‖ϕt‖2.

4Recall that ϕ is separated from the pure states, hence Ψ′(ϕ) is regular and can be differentiated with
respect to time; besides Ψ′′(ϕ) ∈ L∞(Ω).
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Adding and subtracting ‖ϕt‖2, by the interpolation inequality ‖ϕt‖2 ≤ C‖ϕt‖V ‖ϕt‖V ′ , we
get

1

2

d

dt
‖∇µ‖2 + ε‖µt‖2 + ‖ϕt‖2

V ≤
1

2
‖ϕt‖2

V + C‖ϕt‖2
V ′ .

Now observe that
ϕt + εµt = ∆µ,

hence
‖ϕt + εµt‖V ′ = ‖∆µ‖V ′ = C‖∇µ‖.

We thus learn that

‖ϕt‖V ′ ≤ ε‖µt‖V ′ + C‖∇µ‖ ≤ εC1‖µt‖+ C‖∇µ‖,
for some C1 > 0 given by the embedding H ⊂ V ′. This provides the differential inequality

d

dt
‖∇µ‖2 + ε(2− C2ε)‖µt‖2 + ‖ϕt‖2

V ≤ C‖∇µ‖2,

for some structural parameter C2 > 0. Assuming without loss of generality that ε ∈
(0, 2/C2), an integration in time in light of (6.1), recalling that µ0 ∈ V , yields

‖∇µ‖L∞(0,∞;H) ≤ C, ‖ϕt‖L2(0,∞;V ) + ‖
√
εµt‖L2(0,∞;H) ≤ C. (6.5)

At this point, we recall an important inequality satisfied by the singular potential,
firstly envisaged in [18]; see also [15, Ch. 4]:∫

Ω

|F ′(u)| dx ≤ C̃

∣∣∣∣∫
Ω

F ′(u)(u− 〈u〉) dx

∣∣∣∣+ C̃,

where C̃ goes to +∞ as |〈u〉| → 1. According to (6.4), we obtain the existence of C̃ > 0
(depending on δ) such that, for all t ≥ 0,∫

Ω

|F ′(ϕ)| dx ≤ C̃

∣∣∣∣∫
Ω

F ′(ϕ)(ϕ− 〈ϕ〉) dx

∣∣∣∣+ C̃. (6.6)

This is the key ingredient for the next step.

Uniform control for 〈µ〉. By definition of µ written as µ = −∆ϕ + F ′(ϕ) − θ0ϕ, we
have 〈µ〉 = |Ω|−1

∫
Ω
F ′(ϕ)− θ0〈ϕ〉, hence

|〈µ〉| ≤ C(1 + ‖F ′(ϕ)‖L1(Ω)). (6.7)

In order to estimate the L1-norm of F ′(ϕ), we use a classical argument, starting by testing
the equation for µ by ϕ = ϕ− 〈ϕ〉:

(µ, ϕ) = (−∆ϕ, ϕ) + (Ψ′(ϕ), ϕ).

Since
(µ, ϕ) = (µ, ϕ), (−∆ϕ, ϕ) = ‖∇ϕ‖2,

we obtain
‖∇ϕ‖2 + (F ′(ϕ), ϕ) = θ0(ϕ, ϕ) + (µ, ϕ).

As a result, recalling that ‖ϕ‖L∞(Ω) ≤ 1 and that ∇ϕ ∈ L∞(0,∞;H) uniformly in ε, we
get

|(F ′(ϕ), ϕ)| ≤ ‖∇ϕ‖2 + θ0|(ϕ, ϕ)|+ |(µ, ϕ)| ≤ C(1 + ‖∇µ‖).
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Exploiting (6.6), we thus obtain∫
Ω

|F ′(ϕ)| dx ≤ C(1 + ‖∇µ‖),

and inserting into (6.7), we have

|〈µ〉| ≤ C(1 + ‖∇µ‖).
In light of (6.5), we thus conclude that

‖µ‖L∞(0,∞,V ) ≤ C. (6.8)

Finally, recalling that ϕ solves the elliptic problem (2.9) with f = µ + θ0ϕ uniformly
bounded in L∞(0,∞;V ) by (6.2) and (6.8), Lemma 2.3 (ii) yields

‖ϕ‖L∞(0,∞;W 2,p(Ω)) + ‖F ′(ϕ)‖L∞(0,∞;Lp(Ω)) ≤ C,

where p = 6 if d = 3 and for any finite p ≥ 2 if d = 2. In both cases,

‖ϕ‖L∞(0,∞;H2) + ‖F ′(ϕ)‖L∞(0,∞;H) ≤ C.

Collecting all the estimates above, we can state the following.

Theorem 6.1. Let (ϕ0, µ0) ∈ H2 × V comply with the assumptions of Theorem 4.6.
Then, there exists ε1 > 0 such that, for every ε ∈ (0, ε1), the corresponding strong solution
(ϕε, µε) to (2.1)-(2.3) has the following properties:

ϕε ∈ L∞(0,∞;H2), ϕεt ∈ L2(0,∞;V ),

F ′(ϕε) ∈ L∞(0,∞;H),

µε ∈ L∞(0,∞;V ),
√
εµεt ∈ L2(0,∞;H),

where all the norms are bounded independently of ε.

Uniform strict separation in dimension two. Owing to the uniform estimates pro-
vided by Theorem 6.1, we are able to prove the validity of a strict separation property in
dimension 2 which is uniform with respect to ε.

Theorem 6.2. Let d = 2 and (2.10) be in place. For ε ∈ (0, ε1), let (ϕε, µε) be a strong
solution to (2.1)-(2.3) according to Theorem 4.6. Then, there exists δ > 0 such that

|ϕε(x, t)| ≤ 1− δ, ∀(x, t) ∈ Ω× [0,∞), ∀ε ∈ (0, ε1).

Proof. Observe that ϕε solves the elliptic problem (2.9) with

f = µε + θ0ϕ
ε.

By Theorem 4.6, we know in particular that

‖ϕε‖L∞(0,∞;V ) + ‖µε‖L∞(0,∞;V ) ≤ C,

for some C > 0 (which is independent of ε). Accordingly,

‖f‖L∞(0,∞;V ) ≤ C.

This allows the application of Lemma 2.5, yielding

‖F ′(ϕε)‖L∞(Ω×(0,∞)) ≤ C.
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Since F ′ diverges at ±1 and ϕε ∈ C(Ω× [0,∞)) (uniformly in ε), we immediately deduce
the existence of δ > 0 complying with (5.1) in I = [0,∞). Since all the estimates are
independent of T , the proof is completed. �

Let us remark that this short and elegant proof of the two-dimensional strict separation
property can be extended to the classical Cahn–Hilliard equation. An analogous argument
can be found in [14] for a singular Navier–Stokes–Cahn–Hilliard system.

7. Convergence to the Cahn–Hilliard system

Let us consider the classical Cahn–Hilliard equation formally obtained by setting ε = 0,
namely, {

ϕt = ∆µ,

µ = −∆ϕ+ Ψ′(ϕ),
in Ω× (0, T ), (7.1)

completed with the same boundary conditions

∂nϕ = ∂nµ = 0, on ∂Ω× (0, T ), (7.2)

and the initial condition
ϕ(0) = ϕ0, in Ω. (7.3)

After the uniform estimates of Section 6 we are now ready to prove that the convergence
of the ε-model (2.1)-(2.3) to the Cahn-Hilliard one is not only formal, according to the
next result.

Theorem 7.1. Let the initial datum (ϕ0, µ0) comply with the assumptions of Theorem
4.6. Then, on every time interval [0, T ], T > 0, the strong solution (ϕε, µε) to (2.1)-(2.3)
converges 5 as ε→ 0 to a strong solution (ϕ0, µ0) to (7.1)-(7.3).

Proof. In light of the uniform with respect to ε estimates proven above, we can pass to
the limit ε→ 0 with the following convergences (up to subsequences):

ϕε → ϕ0 weakly star in L∞(0, T ;H2),

µε → µ0 weakly star in L∞(0, T ;V ) and weakly in L2(0, T ;V ),

ϕεt → ϕ0
t weakly in L2(0, T ;V ),

εµεt → 0 weakly in L2(0, T ;H).

By Aubin-Lions compactness theorems, we also deduce that ϕε → ϕ0 in L2(0, T ;V ) ∩
C([0, T ], H), and ϕε(x, t)→ ϕ0(x, t) almost everywhere in Ω× (0, T ).

We can now pass to the limit in a standard way in the weak formulation of (2.1)-(2.3) to
show that the limit (ϕ0, µ0) is indeed a weak solution to the Cahn–Hilliard system. Just
note that the weak convergence F ′(ϕε) → F ′(ϕ0) in L2(0, T ;H) is ensured (as above)
by a weak form of the Lebesgue convergence theorem in light of the uniform bound
F ′(ϕε) ∈ L∞(0,∞;H) in Theorem 6.1 and the pointwise convergence F ′(ϕε) → F ′(ϕ0)
(recall that ϕε and ϕ0 belong a.e. to (−1, 1)). Then, since the initial datum ϕ0 ∈ H2

with ∂nϕ0 = 0 on ∂Ω and µ0 ∈ V , it is a standard matter to prove that actually (ϕ0, µ0)
is a strong solution to the Cahn–Hilliard system. �

5In the sense specified along the proof.
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We conclude the section with an estimate of the error between the solutions of the
ε-model and the solutions of the unperturbed one.

Theorem 7.2. Let T > 0 be given. Under the assumptions of Theorem 7.1, we have

‖ϕε(t)− ϕ0(t)‖2
V ′ +

∫ T

0

‖∇ϕε(τ)−∇ϕ0(τ)‖2dτ ≤ Cε,

for any t ∈ [0, T ], where C > 0 depends on T and on the size of the initial datum.

Proof. Let ϕ = ϕε − ϕ0 denote the difference between the solutions of the two problems
departing from the same initial datum (ϕ0, µ0). First, note that 〈ϕ(t)〉 = 〈ϕε(t)〉 − 〈ϕ0〉
for every t ≥ 0, due to the mass conservation property for the Cahn–Hilliard equation
(7.1). Hence, by (6.3),

〈ϕ(t)〉 = 〈ϕε(t)〉 − 〈ϕ0〉 = −ε〈µε(t)〉+ ε〈µ0〉.

Recalling that µε ∈ L∞(0,∞;V ) by Theorem 6.1, we infer that

|〈ϕ(t)〉| ≤ Cε, ∀t ≥ 0. (7.4)

Next, observe that ϕ solves

〈ϕt, v〉+ (∇µ,∇v) = −ε(µεt , v), ∀ v ∈ V, (7.5)

for almost every t ∈ (0, T ), where

µ = −∆ϕ+ Ψ′(ϕε)−Ψ′(ϕ0),

with

ϕ(0) = 0.

Besides,

‖ϕi(t)‖V ≤ C and ‖ϕi(t)‖L∞(Ω) ≤ 1, ∀ t ≥ 0, i = 0, ε,

where here and in what follows C is independent of ε. Taking v = N (ϕ − 〈ϕ〉) in (7.5),
we get

1

2

d

dt
‖ϕ− 〈ϕ〉‖2

] + (µ, ϕ− 〈ϕ〉) = −ε(µεt ,N (ϕ− 〈ϕ〉)).

By the assumptions on Ψ, we have

(µ, ϕ− 〈ϕ〉) = ‖∇ϕ‖2 + (Ψ′(ϕε)−Ψ′(ϕ0), ϕε − ϕ0)− (Ψ′(ϕε)−Ψ′(ϕ0), 〈ϕ〉)
≥ ‖∇ϕ‖2 − θ0‖ϕ‖2 − |(Ψ′(ϕε)−Ψ′(ϕ0), 〈ϕ〉)|
≥ ‖ϕ‖2

V − (θ0 + 1)‖ϕ‖2 −
(
‖Ψ′(ϕε)‖L1(Ω) + ‖Ψ′(ϕ0)‖L1(Ω)

)
|〈ϕ〉|.

Besides, we control ‖ϕ‖2 by interpolation,

(θ0 + 1)‖ϕ‖2 ≤ 1

4
‖ϕ‖2

V + C‖ϕ‖2
∗.

By the Poincaré type inequality ‖N (ϕ− 〈ϕ〉)‖ ≤ C‖∇ϕ‖, we obtain the estimate

−ε(µεt ,N (ϕ− 〈ϕ〉)) ≤ C
√
ε‖
√
εµεt‖‖∇ϕ‖ ≤ Cε‖

√
εµεt‖2 +

1

4
‖ϕ‖2

V .
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Since by definition ‖ϕ‖2
∗ = ‖ϕ − 〈ϕ〉‖2

] + |〈ϕ〉|2, we can write d
dt
‖ϕ − 〈ϕ〉‖2

] = d
dt
‖ϕ‖2

∗ −
d
dt
|〈ϕ〉|2. Collecting everything, we arrive at the differential inequality

d

dt
‖ϕ‖2

∗ + ‖ϕ‖2
V ≤ C‖ϕ‖2

∗ + g|〈ϕ〉|+ hε+
d

dt
|〈ϕ〉|2,

having defined

g(t) = C
(
‖Ψ′(ϕε(t))‖L1(Ω) + ‖Ψ′(ϕ0(t))‖L1(Ω)

)
, h(t) = C‖

√
εµεt(t)‖2.

Note that g and h belong to L1(0, T ), due to Theorem 6.1. In light of (7.4), we finally
end up with

d

dt
‖ϕ‖2

∗ + ‖ϕ‖2
V ≤ C‖ϕ‖2

∗ + Cgε+ hε+
d

dt
|〈ϕ〉|2.

Therefore, an application of the Gronwall lemma gives

‖ϕ(t)‖2
∗ ≤ CT‖ϕ(0)‖2

∗ + Cgε+ Chε+ |〈ϕ(t)〉|2 − |〈ϕ(0)〉|2, ∀ t ∈ [0, T ].

Since ϕ(0) = 0, invoking once again (7.4), we conclude that

‖ϕ(t)‖2
∗ ≤ Cε.

A subsequent integration on [0, T ] of the differential inequality concludes the proof, re-
calling that ‖ · ‖∗ is an equivalent norm on V ′. �

8. Appendix. The associated Neumann problem

For the sake of completeness and for the reader’s convenience, in this appendix we consider
the elliptic problem associated to the model (2.1)-(2.2). We have the following existence
result.

Theorem 8.1. Let ε ∈ (0, ε0) and f ∈ H. Then, the problem{
−ε∆u+ εΨ′(u) + u = f, in Ω,

∂nu = 0, on ∂Ω,
(8.1)

admits a unique solution u ∈ H2 that satisfies the equation a.e. in Ω and the boundary
conditions a.e. on ∂Ω. Besides, F ′(u) ∈ H. In particular, ‖u‖L∞(Ω) ≤ 1 and |u(x)| < 1
for almost every x ∈ Ω.

We report here the main steps of the proof, which is obtained by classical tools.

Proof. Let {bn} be a sequence of eigenvectors of the operator−∆ with Neumann boundary
conditions (−∆bi = λibi, ∂nbi = 0), forming a complete orthonormal basis in H and a
complete orthogonal one in V .

For any λ > 0, consider the regular potential Ψλ defined in (2.11) instead of the singular
potential Ψ in (8.1). Accordingly, the weak formulation of the problem in the Galerkin
scheme reads: find um ∈ Vm = Span{b1, ..., bm} such that

ε(∇um,∇v) + ε(Ψ′λ(um), v) + (um, v) = (f, v), ∀v ∈ Vm.
Use v = um and v = −∆um to get

ε‖∇um‖2 + ε(Ψ′λ(um), um) + ‖um‖2 = (um, f) =⇒ ε‖∇um‖2 + c1‖um‖2 ≤ 1

4c1

‖f‖2,
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where c1 is as in Section 3, and

ε‖∆um‖2 + ε(Ψ′′λ(um)∇um,∇um) + ‖∇um‖2 = −(∆um, f),

providing

ε‖∆um‖2 + 4c1‖∇um‖2 ≤ 1

ε
‖f‖2.

We thus have

‖um‖V ≤ C, ‖um‖H2 ≤ C,

with constants independent of m and λ. We can now pass to the weak limit um ⇀ u in V ∩
H2: by the compact embedding H2 ⊂⊂ C(Ω), the convergence is pointwise and uniform
too. Besides, since F ′λ is Lipschitz continuous (with constant 1/λ), we immediately have
Ψ′λ(um) → Ψ′λ(u) uniformly (in particular in H). Hence we can pass to the limit in the
weak formulation, proving that u ∈ H2 satisfies

ε(∇u,∇v) + ε(Ψ′λ(u), v) + (u, v) = (f, u), ∀v ∈ V.

Integrating by parts, we see that the equation is satisfied a.e. in Ω. Finally, by comparison
in the equation, we get εΨ′λ(u) ∈ H with

‖εΨ′λ(u)‖ ≤ C, (8.2)

independently of λ. Now consider the sequence of solutions uλ and let λ → 0. By the
above estimates, uλ ⇀ u in V ∩H2, hence pointwise and uniformly in Ω. The boundedness
of u can be proved by a standard argument as follows. For any fixed η ∈ (0, 1/2), we
introduce the set Eλ

η = {x ∈ Ω : |uλ(x)| > 1− η} . It is easy to see from (8.2) that

|Eλ
η | ≤

Cε
min{F ′λ(1− η), |F ′λ(−1 + η)|}

.

Passing to the limits λ→ 0 and η → 0, we have | {x ∈ Ω : |u(x)| ≥ 1} | = 0, meaning that
u ∈ L∞(Ω) with |u(x)| < 1 for almost every x ∈ Ω.

Using now the pointwise convergence of uλ and the uniform convergence of F ′λ to F ′ on
any compact set in (−1, 1), we infer that F ′λ(uλ)→ F ′(u), for almost every x ∈ Ω. Then, in
light (8.2), a weak form of the Lebesgue convergence theorem implies that F ′λ(uλ)→ F ′(u)
weakly in H. Therefore, u is a weak solution to the problem (8.1). Then, it is a standard
matter to verify that both the equation and the boundary conditions are satisfied almost
everywhere. �
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11 Boulevard Marie et Pierre Curie - Bâtiment H3 - TSA 61125
F-86073 Poitiers Cedex 9, France
Email address: Alain.Miranville@math.univ-poitiers.fr


