Tissue engineering (TE) strategies require the design and characterization of novel biomaterials capable of mimicking the physiological microenvironments of the tissues to be regenerated. As such, implantable materials should be biomimetic, nanostructured and with mechanical properties approximating those of the target organ/tissue. Self-assembling peptides (SAPs) are biomimetic nanomaterials that can be readily synthesized and customized to match the requirements of some TE applications, but the weak interactions involved in the self-assembling phenomenon make them soft hydrogels unsuited for the regeneration of medium-to-hard tissues. In this work, we moved significant steps forward in the field of chemical cross-linked SAPs towards the goal of stiff peptidic materials suited for the regeneration of several tissues. Novel SAPs were designed and characterized to boost the 4-(N-Maleimidomethyl) cyclohexane-1-carboxylic acid 3-sulpho-N-hydroxysuccinimide ester (Sulfo-SMCC) mediated cross-linking reaction, where they reached G′ values of ~500 kPa. An additional orthogonal cross-linking was also effective and allowed to top remarkable G′ values of 840 kPa. We demonstrated that cross-linking fastened the pre-existing self-aggregated nanostructures, and at the same time, a strong presence of ß-structures is necessary for an effective cross-linking of (LKLK)3-based SAPs. Combining strong SAP design and orthogonal cross-linking reactions, we brought SAP stiffness closer to the MPa threshold, and as such, we opened the door of the regeneration of skin, muscle and lung to biomimetic SAP technology.

Boosted Cross-Linking and Characterization of High-Performing Self-Assembling Peptides / Ciulla, M. G.; Pugliese, R.; Gelain, F.. - In: NANOMATERIALS. - ISSN 2079-4991. - 12:3(2022), pp. 320-320. [10.3390/nano12030320]

Boosted Cross-Linking and Characterization of High-Performing Self-Assembling Peptides

Ciulla M. G.;
2022

Abstract

Tissue engineering (TE) strategies require the design and characterization of novel biomaterials capable of mimicking the physiological microenvironments of the tissues to be regenerated. As such, implantable materials should be biomimetic, nanostructured and with mechanical properties approximating those of the target organ/tissue. Self-assembling peptides (SAPs) are biomimetic nanomaterials that can be readily synthesized and customized to match the requirements of some TE applications, but the weak interactions involved in the self-assembling phenomenon make them soft hydrogels unsuited for the regeneration of medium-to-hard tissues. In this work, we moved significant steps forward in the field of chemical cross-linked SAPs towards the goal of stiff peptidic materials suited for the regeneration of several tissues. Novel SAPs were designed and characterized to boost the 4-(N-Maleimidomethyl) cyclohexane-1-carboxylic acid 3-sulpho-N-hydroxysuccinimide ester (Sulfo-SMCC) mediated cross-linking reaction, where they reached G′ values of ~500 kPa. An additional orthogonal cross-linking was also effective and allowed to top remarkable G′ values of 840 kPa. We demonstrated that cross-linking fastened the pre-existing self-aggregated nanostructures, and at the same time, a strong presence of ß-structures is necessary for an effective cross-linking of (LKLK)3-based SAPs. Combining strong SAP design and orthogonal cross-linking reactions, we brought SAP stiffness closer to the MPa threshold, and as such, we opened the door of the regeneration of skin, muscle and lung to biomimetic SAP technology.
2022
12
3
320
320
Boosted Cross-Linking and Characterization of High-Performing Self-Assembling Peptides / Ciulla, M. G.; Pugliese, R.; Gelain, F.. - In: NANOMATERIALS. - ISSN 2079-4991. - 12:3(2022), pp. 320-320. [10.3390/nano12030320]
Ciulla, M. G.; Pugliese, R.; Gelain, F.
File in questo prodotto:
File Dimensione Formato  
nanomaterials-2022.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 2.83 MB
Formato Adobe PDF
2.83 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1326483
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact