Autonomous vehicles are latency-sensitive systems. The planning phase is a critical component of such systems, during which the in-vehicle compute platform is responsible for determining the future maneuvers that the vehicle will follow. In this paper, we present a GPU-accelerated optimized implementation of the Frenet Path Planner, a widely known path planning algorithm. Unlike the current state-of-the-art, our implementation accelerates the entire algorithm, including the path generation and collision avoidance phases. We measure the execution time of our implementation and demonstrate dramatic speedups compared to the CPU baseline implementation. Additionally, we evaluate the impact of different precision types (double, float, half) on trajectory errors to investigate the tradeoff between completion latencies and computation precision.

Optimized Local Path Planner Implementation for GPU-Accelerated Embedded Systems / Muzzini, F.; Capodieci, N.; Ramanzin, F.; Burgio, P.. - In: IEEE EMBEDDED SYSTEMS LETTERS. - ISSN 1943-0663. - (2023), pp. 1-1. [10.1109/LES.2023.3298733]

Optimized Local Path Planner Implementation for GPU-Accelerated Embedded Systems

Muzzini F.
;
Capodieci N.;Ramanzin F.;Burgio P.
2023

Abstract

Autonomous vehicles are latency-sensitive systems. The planning phase is a critical component of such systems, during which the in-vehicle compute platform is responsible for determining the future maneuvers that the vehicle will follow. In this paper, we present a GPU-accelerated optimized implementation of the Frenet Path Planner, a widely known path planning algorithm. Unlike the current state-of-the-art, our implementation accelerates the entire algorithm, including the path generation and collision avoidance phases. We measure the execution time of our implementation and demonstrate dramatic speedups compared to the CPU baseline implementation. Additionally, we evaluate the impact of different precision types (double, float, half) on trajectory errors to investigate the tradeoff between completion latencies and computation precision.
2023
1
1
Optimized Local Path Planner Implementation for GPU-Accelerated Embedded Systems / Muzzini, F.; Capodieci, N.; Ramanzin, F.; Burgio, P.. - In: IEEE EMBEDDED SYSTEMS LETTERS. - ISSN 1943-0663. - (2023), pp. 1-1. [10.1109/LES.2023.3298733]
Muzzini, F.; Capodieci, N.; Ramanzin, F.; Burgio, P.
File in questo prodotto:
File Dimensione Formato  
frenet_gpu___LB_preprint.pdf

Open access

Descrizione: preprint
Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 262.21 kB
Formato Adobe PDF
262.21 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1321491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact