Treating the nonlinear term of the Gross–Pitaevskii nonlinear Schrödinger equation as a perturbation of an isolated discrete eigenvalue of the linear problem one obtains a Rayleigh–Schrödinger power series. This power series is proved to be convergent when the parameter representing the intensity of the nonlinear term is less in absolute value than a threshold value, and it gives a stationary solution to the nonlinear Schrödinger equation.
Perturbation theory for nonlinear Schrödinger equations / Sacchetti, Andrea. - In: NONLINEARITY. - ISSN 0951-7715. - 36:11(2023), pp. 6048-6070. [10.1088/1361-6544/acfdec]
Perturbation theory for nonlinear Schrödinger equations
Sacchetti, Andrea
Membro del Collaboration Group
2023
Abstract
Treating the nonlinear term of the Gross–Pitaevskii nonlinear Schrödinger equation as a perturbation of an isolated discrete eigenvalue of the linear problem one obtains a Rayleigh–Schrödinger power series. This power series is proved to be convergent when the parameter representing the intensity of the nonlinear term is less in absolute value than a threshold value, and it gives a stationary solution to the nonlinear Schrödinger equation.File | Dimensione | Formato | |
---|---|---|---|
Sacchetti_2023_Nonlinearity_36_6048.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
334.87 kB
Formato
Adobe PDF
|
334.87 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris