Treating the nonlinear term of the Gross–Pitaevskii nonlinear Schrödinger equation as a perturbation of an isolated discrete eigenvalue of the linear problem one obtains a Rayleigh–Schrödinger power series. This power series is proved to be convergent when the parameter representing the intensity of the nonlinear term is less in absolute value than a threshold value, and it gives a stationary solution to the nonlinear Schrödinger equation.

Perturbation theory for nonlinear Schrödinger equations / Sacchetti, Andrea. - In: NONLINEARITY. - ISSN 0951-7715. - 36:11(2023), pp. 6048-6070. [10.1088/1361-6544/acfdec]

Perturbation theory for nonlinear Schrödinger equations

Sacchetti, Andrea
Membro del Collaboration Group
2023

Abstract

Treating the nonlinear term of the Gross–Pitaevskii nonlinear Schrödinger equation as a perturbation of an isolated discrete eigenvalue of the linear problem one obtains a Rayleigh–Schrödinger power series. This power series is proved to be convergent when the parameter representing the intensity of the nonlinear term is less in absolute value than a threshold value, and it gives a stationary solution to the nonlinear Schrödinger equation.
2023
36
11
6048
6070
Perturbation theory for nonlinear Schrödinger equations / Sacchetti, Andrea. - In: NONLINEARITY. - ISSN 0951-7715. - 36:11(2023), pp. 6048-6070. [10.1088/1361-6544/acfdec]
Sacchetti, Andrea
File in questo prodotto:
File Dimensione Formato  
Sacchetti_2023_Nonlinearity_36_6048.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 334.87 kB
Formato Adobe PDF
334.87 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1320427
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact