We deal with a weakly coupled system of ODEs of the type xj′′+nj2xj+hj(x1,…,xd)=pj(t),j=1,…,d,with hj locally Lipschitz continuous and bounded, pj continuous and 2 π-periodic, nj∈ N (so that the system is at resonance). By means of a Lyapunov function approach for discrete dynamical systems, we prove the existence of unbounded solutions, when either global or asymptotic conditions on the coupling terms h1, … , hd are assumed.

Unbounded Solutions to Systems of Differential Equations at Resonance / Boscaggin, A.; Dambrosio, W.; Papini, D.. - In: JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS. - ISSN 1040-7294. - 34:1(2022), pp. 637-650. [10.1007/s10884-020-09890-z]

Unbounded Solutions to Systems of Differential Equations at Resonance

Papini D.
2022

Abstract

We deal with a weakly coupled system of ODEs of the type xj′′+nj2xj+hj(x1,…,xd)=pj(t),j=1,…,d,with hj locally Lipschitz continuous and bounded, pj continuous and 2 π-periodic, nj∈ N (so that the system is at resonance). By means of a Lyapunov function approach for discrete dynamical systems, we prove the existence of unbounded solutions, when either global or asymptotic conditions on the coupling terms h1, … , hd are assumed.
2022
34
1
637
650
Unbounded Solutions to Systems of Differential Equations at Resonance / Boscaggin, A.; Dambrosio, W.; Papini, D.. - In: JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS. - ISSN 1040-7294. - 34:1(2022), pp. 637-650. [10.1007/s10884-020-09890-z]
Boscaggin, A.; Dambrosio, W.; Papini, D.
File in questo prodotto:
File Dimensione Formato  
Boscaggin2020_Article_UnboundedSolutionsToSystemsOfD.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 324.07 kB
Formato Adobe PDF
324.07 kB Adobe PDF Visualizza/Apri
BosDamPap_JDDE_2022.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 305.46 kB
Formato Adobe PDF
305.46 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1316043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact