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Abstract
We deal with a weakly coupled system of ODEs of the type

x ′′
j + n2j x j + h j (x1, . . . , xd) = p j (t), j = 1, . . . , d,

with h j locally Lipschitz continuous and bounded, p j continuous and 2π-periodic, n j ∈ N

(so that the system is at resonance). By means of a Lyapunov function approach for discrete
dynamical systems, we prove the existence of unbounded solutions, when either global or
asymptotic conditions on the coupling terms h1, . . . , hd are assumed.
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1 Introduction

In this paper, we deal with the existence of unbounded solutions for weakly coupled systems
of ODEs of the type
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′′
1 + n21 x1 + h1(x1, . . . , xd) = p1(t),

x ′′
2 + n22 x2 + h2(x1, . . . , xd) = p2(t),

...

x ′′
d + n2d xd + hd(x1, . . . , xd) = pd(t),

(1.1)

where the functions h1, . . . , hd : Rd → R are locally Lipschitz continuous and bounded
and the functions p1, . . . , pd : R → R are continuous and periodic with the same period,
say 2π for simplicity. We will also assume that

n j ∈ N for every j ∈ {1, . . . , d}, (1.2)

implying, as well-known, that the scalar equation x ′′
j +n2j x j = 0 has a nontrivial 2π-periodic

solution (in fact, all its nontrivial solutions are 2π -periodic). Following a popular terminology
(cf. [21]), system (1.1) is thus said to be at resonance.

In the scalar case (that is, d = 1), the problem of the existence of unbounded solutions
has been considered since the nineties. Indeed, the first result can be essentially traced back
to Seifert [22], establishing the existence of unbounded solutions to the equation

x ′′ + n2x + h(x) = p(t), x ∈ R, (1.3)

as a consequence of a non-existence result for 2π -periodic solutions by Lazer and Leach [17]
together with the classical Massera’s theorem. Later on, sharper conclusions were obtained
by Alonso and Ortega in [1]. In particular, according to [1, Proposition 3.1], any solution of
(1.3) is unbounded both in the past and in the future whenever

2 (sup h − inf h) ≤
∣
∣
∣
∣

∫ 2π

0
p(t)eint dt

∣
∣
∣
∣ ; (1.4)

moreover, due to [1, Proposition 3.4], any sufficiently large solution is unbounded either in
the past or in the futurewhen the global condition (1.4) is replaced by the (weaker) asymptotic
assumption

2

∣
∣
∣
∣max

{

lim sup
x→+∞

h(x), lim sup
x→−∞

h(x)

}

− min

{

lim inf
x→+∞ h(x), lim inf

x→−∞ h(x)

}∣
∣
∣
∣

<

∣
∣
∣
∣

∫ 2π

0
p(t)eint dt

∣
∣
∣
∣ .

Both results were proved via an abstractmethod, based on the use of Lyapunov-like functions,
developed in the same paper. Generalizations of this kind of results to more general situations
(like asymmetric oscillators and planar Hamiltonian systems) were then obtained by many
authors (see, among others, [2,6–10,16,18,20,21,23] and the references therein).

Yet, as far as we know, the boundedness problem for system (1.1) is rather unexplored.
The aim of the present paper is to provide some results in this direction, by investigating to
what extent the method developed in [1] could be successfully applied to systems of second
order equations.

Roughly speaking, we will show in Sect. 2 that a first result, Theorem 2.1, can be easily
achieved when appropriate global conditions are imposed on the coupling terms h1, . . . , hd .
In such a situation, the resonance assumption (1.2) can be even weakened into

n j ∈ N for some j ∈ {1, . . . , d}.
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Moreover, with the same approach, it is possible to consider a genuinely vectorial problem
like

x ′′ + Ax + h(x) = p(t), x ∈ R
d ,

where h : Rd → R
d , p : R → R

d and A is a symmetric, positive definite, d × d matrix
which has n2 as eigenvalue, with n ∈ N (see Theorem 2.3).

The possibility of obtaining results with asymptotic assumptions on the functions
h1, . . . , hd is then studied in Sect. 3. As expected, this is a much more delicate issue, since
the coupling between the equations plays an essential role. It seems then necessary to focus
the attention on quite specific choices for the coupling terms h1, . . . , hd ; we will investigate
in details the case of the cyclic coupling

h j (x1, . . . , xd) = h j (x j+1) (1.5)

and of the radial coupling

h j (x1, . . . , xd) = h j

(√

x21 + · · · + x2d

)

. (1.6)

We refer to Theorems 3.1 and 3.2 for the precise statements; notice that some care must be
taken to describe the sets of solutions which are unbounded.

Let us finally recall that, for scalar second order equations at resonance, the existence
of unbounded solutions is strictly related to the existence of periodic solutions, and these
problems are often considered together. In this regard, we mention that, despite some recent
results obtained about periodic solutions for weakly coupled systems of ODEs (see, for
instance, [5,13–15,19] and the references therein), the existence of periodic solutions for
systems like (1.1) under the resonance assumption (1.2) seems to be a quite open issue (we
are just aware of [3]).
Notation. Throughout the paper, the symbol | · | will be freely used to denote the absolute
value of a real number, the modulus of a complex number or the Euclidean norm of a k-
dimensional vector for k ≤ d (the specific meaning will be clear from the context). We also
denote N = {1, 2, 3, . . . }.

2 A Global Result

In this section we prove the existence of unbounded solutions for system (1.1) under global
assumptions on the coupling terms h1, . . . , hd . For briefness, from now on we write (1.1) in
compact form as

x ′′
j + n2j x j + h j (x) = p j (t), j = 1, . . . , d, (2.1)

where x = (x1, . . . , xd), and we assume n j > 0, h j : Rd → R locally Lipschitz continuous
and bounded and p j : R → R continuous and 2π -periodic (for every j). Our result reads as
follows.

Theorem 2.1 In the previous setting, assume that

n j ∈ N and 2(sup h j − inf h j ) <

∣
∣
∣
∣

∫ 2π

0
p j (t)e

in j t dt

∣
∣
∣
∣ for some j ∈ {1, . . . , d}.

(2.2)
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Then, for every solution x of (2.1) it holds that

lim|t |→+∞(x j (t)
2 + x ′

j (t)
2) = +∞.

Let us observe that this result is, basically, of scalar nature: indeed, assumption (2.2)
involves only the j-th equation of system (2.1) and, accordingly, the conclusion is for the
j-th component of the vector solution (x1, . . . , xd). Of course, in the case when system (2.1)
is fully at resonance (meaning that (1.2) is satisfied), and the global assumption 2(sup h j −
inf h j ) <

∣
∣
∣
∫ 2π
0 p j (t)ein j t dt

∣
∣
∣ holds for every j = 1, . . . , d , then it follows that all the

components of any solution of (2.1) are unbounded, both in the past and in the future.

Remark 2.2 We recall the following fact (cf. [1, Lemma 3.2]) which will be used several
times throughout the paper: for every integrable function q and every n ∈ N, it holds that

∣
∣
∣
∣

∫ 2π

0
q(t)eint dt

∣
∣
∣
∣ = max

ϕ∈[0,2π ]

∫ 2π

0
q(t) sin(nt + ϕ) dt .

We are now in a position to give the proof of Theorem 2.1.

Proof Let x be a solution of (2.1). We divide the proof in two steps.
Step 1. Let k ∈ Z; we show that

lim|k|→+∞

(
x j (2kπ)2 + x ′

j (2kπ)2
)

= +∞. (2.3)

To this end, according to Remark 2.2, let ϕ j ∈ [0, 2π ] be such that

∣
∣
∣
∣

∫ 2π

0
p j (t)e

in j t dt

∣
∣
∣
∣ =

∫ 2π

0
p j (t) sin(n j t + ϕ j ) dt (2.4)

and let

� =
∫ 2π

0
p j (t) sin(n j t + ϕ j ) dt − 2(sup h j − inf h j ). (2.5)

In view of assumption (2.2), it results � > 0.
Let us now define the Lyapunov-like function

V (ζ, η) = η sin ϕ j − n jζ cosϕ j , ∀ (ζ, η) ∈ R
2. (2.6)
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A simple computation shows that for every integer k > 0 we have

V (x j (2kπ), x ′
j (2kπ)) − V (x j (0), x

′
j (0))

=
[
x ′
j (t) sin(n j t + φ j )

]2kπ

0
− n j

[
x j (t) cos(n j t + φ j )

]2kπ
0

=
∫ 2kπ

0

[
x ′′
j (t) + n2j x j (t)

]
sin(n j t + ϕ j ) dt

=
∫ 2kπ

0
p j (t) sin(n j t + ϕ j ) dt −

∫ 2kπ

0
h j (x(t)) sin(n j t + ϕ j ) dt

≥ k
∫ 2π

0
p j (t) sin(n j t + ϕ j ) dt − sup h j

∫ 2kπ

0
sin+(n j t + ϕ j ) dt

+ inf h j

∫ 2kπ

0
sin−(n j t + ϕ j ) dt

= k
∫ 2π

0
p j (t) sin(n j t + ϕ j ) dt − 2k(sup h j − inf h j ),

where sin+ s = max{sin s, 0} and sin− s = max{− sin s, 0}. Recalling (2.5), we then deduce
that

V (x j (2kπ), x ′
j (2kπ)) − V (x j (0), x

′
j (0)) ≥ k�, ∀ k ∈ N.

This implies that

lim
k→+∞ V (x j (2kπ), x ′

j (2kπ)) = +∞,

thus proving (2.3) when k → +∞.
When k is a negative integer, by arguing as above it is possible to prove that

V (x j (0), x
′
j (0)) − V (x j (2kπ), x ′

j (2kπ)) ≥ −k�,

implying that

lim
k→−∞ V (x j (2kπ), x ′

j (2kπ)) = −∞.

and finally (2.3) when k → −∞.
Step 2.We prove that

lim|t |→+∞

(
x j (t)

2 + x ′
j (t)

2
)

= +∞. (2.7)

To this end, let

Mj = sup |h j | + sup |p j |
and define the partial energy function

E j (t) = 1

2
x ′
j (t)

2 + 1

2
n2j x j (t)

2 + 1

2
M2

j , ∀ t ∈ R.

A simple computation shows that

E ′
j (t) = [p j (t) − h j (x1(t), . . . , xd(t)]x ′

j (t), ∀ t ∈ R,
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and thus, using the elementary inequality |ab| ≤ 1
2 (a

2 + b2) for a, b ∈ R,

|E ′
j (t)| ≤ E j (t), ∀ t ∈ R.

Gronwall’s Lemma then yields

E j (t) ≥ e2kπ−t E j (2kπ) ≥ e−2π E j (2kπ), ∀ t ∈ [2kπ, 2(k + 1)π), (2.8)

where k is the integer part of t/2π . Taking into account (2.3) and the definition of E j , from
(2.8) we deduce that

lim
t→+∞ E j (t) = +∞,

which implies (2.7) when t → +∞. The proof for t → −∞ is analogous. 	

In the remaining part of this section, we show how to deal, using the same scheme of

proof, with the more general system

x ′′ + Ax + h(x) = p(t), x ∈ R
d , (2.9)

where A is a d × d matrix, h : R
d → R

d is locally Lipschitz continuous and bounded,
p : R → R

d is continuous and 2π -periodic (of course, system (2.1) enters this setting, with
A diagonal). Before stating the result, we recall that the linear homogeneous system

x ′′ + Ax = 0, (2.10)

has a nontrivial 2π- periodic solution if and only if A has an eigenvalue of the form n2, for
some n ∈ N. With this in mind, the following result holds true (in the statement, 〈·, ·〉 stands
for the Euclidean scalar product in Rd and | · | for the associated norm).

Theorem 2.3 In the previous setting, suppose that the matrix A is symmetric and positive
definite and assume that there there exists n ∈ N such that n2 is an eigenvalue of A. Finally,
suppose that there exists a nontrivial 2π -periodic solution v of (2.10) satisfying

sup |h|
∫ 2π

0
|v(t)| dt <

∣
∣
∣
∣

∫ 2π

0
〈p(t), v(t)〉 dt

∣
∣
∣
∣ . (2.11)

Then, for every solution x of (2.9) it holds that

lim|t |→+∞(|x(t)|2 + |x ′(t)|2) = +∞. (2.12)

Proof Let x be a solution of (2.9). We first observe that it is sufficient to prove that

lim|k|→+∞(|x(2kπ)|2 + |x ′(2kπ)|2) = +∞, (2.13)

where k is an integer. Indeed, defining the energy function

E(t) = 1

2
|x ′(t)|2 + 1

2
〈Ax(t), x(t)〉 + 1

2
M2, ∀ t ∈ R,

where M = sup(|p| + |h|), by arguing as in the second step of the proof of Theorem (2.1) it
can be shown that (2.13) implies (2.12) (here, we use the fact that A is positive definite).

We now show the validity of (2.13) when k → +∞; the case of k → −∞ is similar.
Assume then k > 0 and let

�′ =
∣
∣
∣
∣

∫ 2π

0
〈p(t), v(t)〉 dt

∣
∣
∣
∣ − sup |h|

∫ 2π

0
|v(t)| dt; (2.14)
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observe that �′ > 0 by (2.11). Let us define

V (ζ, η) = 〈η, v(0)〉 − 〈ζ, v′(0)〉, ∀ (ζ, η) ∈ R
d × R

d .

As in the previous proof, a standard computation shows that

V (x(2kπ), x ′(2kπ)) − V (x(0), x ′(0)) =
∫ 2kπ

0
〈x ′′(t) + Ax(t), v(t)〉 dt

=
∫ 2kπ

0
〈p(t), v(t)〉 dt −

∫ 2kπ

0
〈h(x(t)), v(t)〉 dt

≥ k
∫ 2π

0
〈p(t), v(t)〉 dt − sup |h|

∫ 2kπ

0
|v(t)| dt

= k
∫ 2π

0
〈p(t), v(t)〉 dt − k sup |h|

∫ 2π

0
|v(t)| dt .

Recalling (2.14), we then deduce that

V (x(2kπ), x ′(2kπ)) − V (x(0), x ′(0)) ≥ k�′, ∀k ∈ N.

This implies that

lim
k→+∞ V (x(2kπ), x ′(2kπ)) = +∞,

thus proving (2.13) when k → +∞. 	

It is worth noticing that, with the same proof, Theorem 2.3 could be extended to the case

of an infinite-dimensional system like

x ′′ + Ax + h(x) = p(t), x ∈ H,

where H is a real Hilbert space and A : H → H is a positive, bounded and self-adjoint
linear operator. In fact, Alonso and Ortega in [1, Section 4] already considered the case of a
semilinear wave equation at resonance. For some recent advances on the topic of ODEs in
Hilbert spaces, see [4,11,12] and the references therein.

We end this section with a comparison between Theorems 2.1 and 2.3 in the case when
A is a diagonal matrix.

Remark 2.4 Theorem 2.3 is of vectorial nature. In the case of a diagonal matrix A, when
compared with Theorem (2.1) it requires a stronger condition in the coupling term h. Indeed,
if n2j is the eigenvalue of A corresponding to an integer n j , we can take

v(t) = sin(n j t + ϕ j )e j , ∀ t ∈ R,

where ϕ j is as in (2.4) and e j is the j-th vector of the standard basis ofRd : hence, assumption
(2.11) reads as

∫ 2π

0
p j (t) sin(n j t + ϕ j ) dt =

∣
∣
∣
∣

∫ 2π

0
p j (t)e

in j t dt

∣
∣
∣
∣ > sup |h|

∫ 2π

0
| sin(n j t + ϕ j )| dt = 4 sup |h|,

which is stronger than (2.2) since

4 sup |h| ≥ 4 sup |h j | ≥ 2(sup h j − inf h j ).
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On the other hand, a sharper result in the general case of system (2.9) can be proved by
diagonalizing the matrix A. Indeed, let Q be an orthogonal matrix such that QAQT = D is
diagonal and let y = Qx . The original system (2.9) is then transformed in

y′′ + Dy + h∗(y) = p∗(t), (2.15)

where h∗(y) = Qh(QT y) and p∗(t) = Qp(t). As a consequence, an unboundedness result
for x can be obtained by applying Theorems (2.1) to (2.15) when

2(sup h∗
j − inf h∗

j ) <

∣
∣
∣
∣

∫ 2π

0
p∗
j (t)e

in j t dt

∣
∣
∣
∣ .

This is a sharper assumption compared to (2.11), but it involves the matrix Q, whose knowl-
edge is not required in (2.11).

3 Two Asymptotic Results

In this section, we deal again with system (2.1), by studying a couple of situations in which
the assumptions on the nonlinear coupling term involve its asymptotic behavior rather than
the span of its image. Whenever n j ∈ N, we will use again (cf. (2.6)) the Lyapunov function
Vj,ϕ(ζ, η) = ζ sin ϕ − n jη cosϕ, with suitable choiches of ϕ ∈ [0, 2π], to estimate the
growth of (x j (2kπ), x ′

j (2kπ)) with respect to k ∈ Z. As in the proof of Theorem 2.1, if
n j ∈ N, then we have that

Vj,ϕ(x j (2π), x ′
j (2π)) − Vj,ϕ(x j (0), x

′
j (0)) =

∫ 2π

0
[p j (t) − h j (x(t))] sin(n j t + ϕ) dt

(3.1)

and that there exists ϕ0
j ∈ [0, 2π ] such that

∫ 2π

0
p j (t) sin

(
n j t + ϕ0

j

)
dt =

∣
∣
∣
∣

∫ 2π

0
p j (t)e

in j t dt

∣
∣
∣
∣ .

The estimate of
∫ 2π
0 h j (x(t)) sin(n j t+ϕ) dt for large solutions will depend on the particular

form of the nonlinear term h j : we consider cyclic and radial dependencies. In any case, we
need an estimate of the solution on [0, 2π ]with respect to initial conditions.A straightforward
application of the variation of constants formula shows that

x j (t) = x j (0) cos n j t + x ′
j (0)

n j
sin n j t + 1

n j

∫ t

0

[
p j (s) − h j (x(s))

]
sin n j (t − s) ds

j = 1, . . . , d

if x is any solution of our system. In particular, the boundedness of h j and p j implies the
following estimate:

x j (t) = A j sin(n j t + ω j ) + σ j (t)

A j =
√
√
√
√x2j (0) + x ′

j (0)
2

n2j
, ω j ∈ [0, 2π ], ‖σ j‖C2([0,2π ]) ≤ C,

(3.2)

where the constant C is independent of A j and j .
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3.1 Systems with Cyclic Coupling

Here we assume that system 2.1 is cyclically coupled, that is

h j (x) = h j (x j+1)

for each j ∈ {1, . . . , d} (as usual, we use the cyclic agreement xd+1 = x1); cf. (1.5). In
particular, we have that h j : R → R is locally Lipschitz continuous and bounded for each
j ∈ {1, . . . , d}. Henceforth, we will thus write system (2.1) as

x ′′
j + n2j x j + h j (x j+1) = p j (t), j ∈ {1, . . . , d}. (3.3)

For this subsection, we also introduce the notations

h j (±∞) = lim sup
s→±∞

h j (s), h j (±∞) = lim inf
s→±∞ h j (s),

and


h j = max{h j (+∞), h j (−∞)} − min{h j (+∞), h j (−∞)}.
Notice that, when h j has limits h j (±∞) at infinity, then


h j = ∣
∣h j (+∞) − h j (−∞)

∣
∣ .

Our result reads as follows.

Theorem 3.1 In the previous setting, assume that

n j ∈ N and 2
h j <

∣
∣
∣
∣

∫ 2π

0
p j (t)e

in j t dt

∣
∣
∣
∣ , for every j ∈ {1, . . . , d}.

Then, for every j ∈ {1, . . . , d} there exist open sets C−
j , C+

j ⊂ R
2 such that R2\(C+

j ∪ C−
j )

is compact and, setting

C :=
d∏

j=1

(
C−
j ∪ C+

j

)
,

the following holds true:

(i) for every solution x of (3.3),

(x(0), x ′(0)) ∈ C �⇒ sup
t∈R

(
x j (t)

2 + x ′
j (t)

2
)

= +∞, for every j ∈ {1, . . . , d}.

Moreover, setting

C− =
d∏

j=1

C−
j and C+ =

d∏

j=1

C+
j ,

the following hold:

(ii) C− ∩ C+ has infinite measure;
(iii) for every solution x of (3.3),

(x(0), x ′(0)) ∈ C− �⇒ lim
t→−∞

(
x j (t)

2 + x ′
j (t)

2
)

= +∞, for every j ∈ {1, . . . , d},

(x(0), x ′(0)) ∈ C+ �⇒ lim
t→+∞

(
x j (t)

2 + x ′
j (t)

2
)

= +∞, for every j ∈ {1, . . . , d}.
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Let us explain more informally the meaning of Theorem 3.1. To this end, notice that

C− ∩ C+ ⊂ C± ⊂ C.

The set C is the largest one: its projection C−
j ∪ C+

j on the j-th factor R2 has compact
complement. The sets C± are smaller (and indeed it will be clear from the proof that their
components C±

j are not the complement of a compact set) but they have the property of
having infinite measure: even more, their intersection C− ∩ C+ has infinite measure, as well.
The unbounded properties of the solutions starting on this sets can be described as follows:

(i) for vector solutions x starting on C, each component x j is unbounded in the phase-plane:
it could be, however, that some component is unbounded in the past and some other in
the future;

(ii) for vector solutions x starting on C− (resp., C+), each component x j is unbounded in the
past (resp., in the future);

(iii) for vector solutions x starting on C− ∩ C+, each component x j is unbounded both in the
past and in the future.

Proof We fix � > 0 such that

∫ 2π

0
p j (t) sin

(
n j t + ϕ0

j

)
dt =

∣
∣
∣
∣

∫ 2π

0
p j (t)e

in j t dt

∣
∣
∣
∣ > 2(
h j + �), j ∈ {1, . . . , d}.

By continuity, there exist open intervals I j containing ϕ0
j such that

∫ 2π

0
p j (t) sin(n j t + ϕ j ) dt > 2(
h j + �), ∀ϕ j ∈ I j and j ∈ {1, . . . , d}. (3.4)

We claim that:

lim sup
A j+1→+∞

∫ 2π

0
h j (x j+1(t)) sin(n j t + ϕ) dt

≤ 2
h j , uniformly w.r.t. ϕ ∈ [0, 2π] and Ai , i �= j + 1, (3.5)

where we recall that A j+1 → +∞ is equivalent to
∣
∣
∣(x j+1(0), x ′

j+1(0))
∣
∣
∣ → +∞, as it can

be seen in (3.2). Indeed, by Fatou’s lemma we have that

lim sup
A j+1→+∞

∫ 2π

0
h j (x j+1(t)) sin(n j t + ϕ) dt ≤

∫ 2π

0
lim sup

A j+1→+∞
[h j (x j+1(t)) sin(n j t + ϕ)] dt

and estimate (3.2) shows that for almost every t ∈ [0, π ] we have that either x j+i (t) → +∞
or x j+i (t) → −∞ as A j+1 → +∞ and these limits hold uniformly w.r.t. Ai for i �= j + 1.
Therefore, we deduce that:
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lim sup
A j+1→+∞

[h j (x j+1(t)) sin(n j t + ϕ)]

= sin+(n j t + ϕ) lim sup
A j+1→+∞

h j (x j+1(t)) − sin−(n j t + ϕ) lim inf
A j+1→+∞ h j (x j+1(t))

≤ sin+(n j t + ϕ)max{h j (+∞), h j (−∞)} − sin−(n j t + ϕ)min{h j (+∞), h j (−∞)}

for almost every t ∈ [0, 2π ]. Since ∫ 2π
0 sin±(n j t + ϕ) dt = 2, we obtain (3.5).

Thanks to (3.5), there is a constant A > 0 such that

x j+1(0)
2 + x ′

j+1(0)
2 ≥ A2 �⇒

∫ 2π

0
h j (x j+1(t)) sin(n j t + ϕ) dt ≤ 2
h j + �, ∀ϕ ∈ [0, 2π ],

for each j ∈ {1, . . . , d}. Hence, we deduce that
x j+1(0)

2 + x ′
j+1(0)

2 ≥ A2 �⇒ Vj,ϕ j (x j (2π), x ′
j (2π)) − Vj,ϕ j (x j (0), x

′
j (0)) ≥ �,

∀ϕ j ∈ I j ,

by using (3.1) and (3.4).
Let us define

V j (A) = max{Vj,ϕ(ζ, η) : |(ζ, η)| ≤ A and ϕ ∈ [0, 2π]}.
If the initial conditions satisfy Vj,ϕ j (x j (0), x

′
j (0)) > V j (A) for some ϕ j ∈ I j and all

j ∈ {1, . . . , d}, then we have that x j (0)2 + x ′
j (0)

2 ≥ A2 for all j ∈ {1, . . . , d} and, hence,

Vj,ϕ j (x j (2π), x ′
j (2π)) ≥ Vj,ϕ j (x j (0), x

′
j (0)) + � > Vj,ϕ j (x j (0), x

′
j (0)) ≥ A, ∀ j ∈ {1, . . . , d}.

Therefore, we obtain recursively that

Vj,ϕ j (x j (2kπ), x ′
j (2kπ)) − Vj,ϕ j (x j (0), x

′
j (0)) ≥ k�, ∀k ∈ N and j ∈ {1, . . . , d},

which implies that x j (2kπ)2 + x ′
j (2kπ)2 → +∞ as k → +∞.

In a similar way, if the initial conditions satisfy Vj,ϕ j (x j (0), x
′
j (0)) < −V j (A) for some

ϕ j ∈ I j and all j ∈ {1, . . . , d}, then we can show that x j (2kπ)2 + x ′
j (2kπ)2 → +∞ as

k → −∞.
We observe now that, for a fixed j ∈ {1, . . . , d} and a fixed ϕ j ∈ I j , the inequalities

Vj,ϕ j (ζ, η) < −V j (A) and Vj,ϕ j (ζ, η) > V j (A) define two opposite half-planes in R2 that

originate from the two parallel straight lines Vj,ϕ j (ζ, η) = ±V j (A). For each j ∈ {1, . . . , d}
we fix two angles ϕ1

j , ϕ
2
j ∈ I j such that 0 < |ϕ1

j − ϕ2
j | < π and define the open regions

C+
j = {(ζ, η) ∈ R

2 : Vj,ϕ1
j
(ζ, η) > V j (A)} ∪ {(ζ, η) ∈ R

2 : Vj,ϕ2
j
(ζ, η) > V j (A)}

C−
j = {(ζ, η) ∈ R

2 : Vj,ϕ1
j
(ζ, η) < −V j (A)} ∪ {(ζ, η) ∈ R

2 : Vj,ϕ2
j
(ζ, η) < −V j (A)},

which are actually two reflex angles in the plane and opposite to each other with respect to
the origin. In particular C+

j ∩ C−
j is made up by two opposite and disjoint angles and, thus,

has infinite measure, while R2\(C+
j ∪ C−

j ) is a compact parallelogram.
We conclude by using the argument at the beginning of the proof of Theorem 2.1. 	
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3.2 Systems with Radial Coupling

We assume here that the nonlinear term depends only on the Euclidean norm of the vector
solution, that is

h j (x) = h j (|x |), j ∈ {1, . . . , d};
cf. (1.6). Therefore, system (2.1) becomes

x ′′
j + n2j x j + h j (|x |) = p j (t), j ∈ {1, . . . , d}, (3.6)

where h j : [0,+∞) → R is locally Lipschitz continuous and bounded, for j ∈ {1, . . . , d}.
In this subsection we also set

h j (+∞) = lim sup
s→+∞

h j (s), h j (+∞) = lim inf
s→+∞ h j (s) and


h j = h j (+∞) − h j (+∞), ∀ j ∈ {1, . . . , d}.
Our result reads as follows.

Theorem 3.2 In the previous setting, assume that

n j ∈ N and 2
h j <

∣
∣
∣
∣

∫ 2π

0
p j (t)e

in j t dt

∣
∣
∣
∣ , for some j ∈ {1, . . . , d}.

Then, there exist open sets C−
j , C+

j ⊂ R
2 such that R2\(C−

j ∪ C+
j ) is compact, C−

j ∩ C+
j has

infinite measure and, moreover, the following holds true for every solution x of (3.6):

(x j (0), x
′
j (0)) ∈ C−

j �⇒ lim
t→−∞

(
x j (t)

2 + x ′
j (t)

2
)

= +∞;

(x j (0), x
′
j (0)) ∈ C+

j �⇒ lim
t→+∞

(
x j (t)

2 + x ′
j (t)

2
)

= +∞.

Let us notice that, contrarily to Theorem 3.1, both the assumptions and the conclusions
of Theorem 3.2 refer to a component x j of the vector solution x (from this point of view, the
statement is more similar to the one of Theorem 2.1).

Proof As in the proof of Theorem 3.1, we fix � > 0 and an open interval I j ⊂ [0, 2π] such
that

∫ 2π

0
p j (t) sin(n j t + ϕ j ) dt > 2(
h j + �), ∀ϕ j ∈ I j . (3.7)

We claim that

lim sup
A j→+∞

∫ 2π

0
h j (|x(t)|) sin(n j t + ϕ) dt ≤ 2
h j ,

uniformly w.r.t. ϕ ∈ [0, 2π ] and Ai , for i �= j . (3.8)

Again, by Fatou’s lemma we have that

lim sup
A j→+∞

∫ 2π

0
h j (|x(t)|) sin(n j t + ϕ) dt ≤

∫ 2π

0
lim sup
A j→+∞

[h j (|x(t)|) sin(n j t + ϕ)] dt

and estimate (3.2) shows that for almost every t ∈ [0, π ]wehave that |x(t)| ≥ |x j (t)| → +∞
as A j → +∞ (still uniformly w.r.t. Ai , i �= j). Therefore, we deduce that

lim sup
A j→+∞

[h j (|x(t)|) sin(n j t + ϕ)] = sin+(n j t + ϕ)h j (+∞) − sin−(n j t + ϕ)h j (+∞)
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for almost every t ∈ [0, 2π ] and we obtain (3.8).
Thanks to (3.8), there is a constant A > 0 such that

x j (0)
2 + x ′

j (0)
2 ≥ A2 �⇒

∫ 2π

0
h j (|x(t)|) sin(n j t + ϕ) dt ≤ 2
h j + �, ∀ϕ ∈ [0, 2π].

Hence, we deduce that

x j (0)
2 + x ′

j (0)
2 ≥ A2 �⇒ Vj,ϕ j (x j (2π), x ′

j (2π)) − Vj,ϕ j (x j (0), x
′
j (0)) ≥ �, ∀ϕ j ∈ I j ,

by using (3.1) and (3.7).
Let us define V j (A) = max{Vj,ϕ(ζ, η) : |(ζ, η)| ≤ A and ϕ ∈ [0, 2π]}. If the initial

conditions satisfy Vj,ϕ j (x j (0), x
′
j (0)) > V j (A) for someϕ j ∈ I j , thenwe have that x j (0)2+

x ′
j (0)

2 ≥ A2 and, hence,

Vj,ϕ j (x j (2π), x ′
j (2π)) ≥ Vj,ϕ j (x j (0), x

′
j (0)) + � > Vj,ϕ j (x j (0), x

′
j (0)) ≥ A.

Therefore, we obtain recursively that

Vj,ϕ j (x j (2kπ), x ′
j (2kπ)) − Vj,ϕ j (x j (0), x

′
j (0)) ≥ k�, ∀k ∈ N,

which implies that x j (2kπ)2 + x ′
j (2kπ)2 → +∞ as k → +∞.

In a similar way, if the initial conditions satisfy Vj,ϕ j (x j (0), x
′
j (0)) < −V j (A) for some

ϕ j ∈ I j , then we can show that x j (2kπ)2 + x ′
j (2kπ)2 → +∞ as k → −∞.

Now, we define the open regions

C+
j = {(ζ, η) ∈ R

2 : Vj,ϕ1
j
(ζ, η) > V j (A)} ∪ {(ζ, η) ∈ R

2 : Vj,ϕ2
j
(ζ, η) > V j (A)},

C−
j = {(ζ, η) ∈ R

2 : Vj,ϕ1
j
(ζ, η) < −V j (A)} ∪ {(ζ, η) ∈ R

2 : Vj,ϕ2
j
(ζ, η) < −V j (A)},

and we conclude as in the proof of Theorem 3.1. 	
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