Oxide-ion conductors are of high interest in electrochemical devices such as solid-oxide fuel cells, oxygen sensors, and separation membranes. In this paper, high oxide-ion conductivity and associated ion conduction mechanism in perovskite-type oxides Na0.5Bi0.5-xTi1-yMgyO3-1.5x-y (for x = 0.0 and y = 0.0, x = 0.01 and y = 0.02, x = 0.01 and y = 0.04) are investigated systematically. Na0.5Bi0.5TiO3 ceramic is a poor conductor, whereas Na0.5Bi0.49Ti0.98Mg0.02O2.965 and Na0.5Bi0.49Ti0.96Mg0.04O2.945 ceramics are excellent oxide-ion conductors at 500 °C. While the Rietveld refinements of powder X-ray diffraction data using the monoclinic Cc space group and the rhombohedral R3c space group showed reasonably similar quality of fits, extended X-ray absorption fine structure (EXAFS) data could be fitted only with the monoclinic Cc structure at room temperature for all three ceramics. Extensive EXAFS investigations have also been used to probe the local environments of Bi and Ti atoms directly and reveal the ordering of Bi3+/Na+, displacements of the cations, oxygen-vacancy generation, and their migration pathways. Our EXAFS results demonstrate Bi- and Na-rich planes formation due to short-range ordering of Bi3+/Na+ in the perovskite units. Oxygen vacancies were found to be located in the Bi-rich planes. 23Na magic-angle spinning NMR experiments indicate that the local environments of Na atoms are disordered. The present work also provides an insight into the dramatically improved conducting behavior of Na0.5Bi0.49Ti0.98Mg0.02O2.965 and Na0.5Bi0.49Ti0.96Mg0.04O2.945 ceramics in terms of the local, long-range, and microstructure, which can be exploited to develop design principles for the syntheses of related oxides with even improved properties.
Associating High Oxide-Ion Conductivity and Conduction Mechanisms with Local Atomic Environments in Na0.5Bi0.5- xTi1- yMgyO3-δ / Santhoshkumar, B.; Priolkar, K. R.; Pollastri, S.; Oliveira De Souza, D.; Carlomagno, I.; Bera, A. K.; Yusuf, S. M.; Pahari, B.. - In: JOURNAL OF PHYSICAL CHEMISTRY. C. - ISSN 1932-7447. - 125:36(2021), pp. 19621-19630. [10.1021/acs.jpcc.1c04995]
Associating High Oxide-Ion Conductivity and Conduction Mechanisms with Local Atomic Environments in Na0.5Bi0.5- xTi1- yMgyO3-δ
Pollastri S.;
2021
Abstract
Oxide-ion conductors are of high interest in electrochemical devices such as solid-oxide fuel cells, oxygen sensors, and separation membranes. In this paper, high oxide-ion conductivity and associated ion conduction mechanism in perovskite-type oxides Na0.5Bi0.5-xTi1-yMgyO3-1.5x-y (for x = 0.0 and y = 0.0, x = 0.01 and y = 0.02, x = 0.01 and y = 0.04) are investigated systematically. Na0.5Bi0.5TiO3 ceramic is a poor conductor, whereas Na0.5Bi0.49Ti0.98Mg0.02O2.965 and Na0.5Bi0.49Ti0.96Mg0.04O2.945 ceramics are excellent oxide-ion conductors at 500 °C. While the Rietveld refinements of powder X-ray diffraction data using the monoclinic Cc space group and the rhombohedral R3c space group showed reasonably similar quality of fits, extended X-ray absorption fine structure (EXAFS) data could be fitted only with the monoclinic Cc structure at room temperature for all three ceramics. Extensive EXAFS investigations have also been used to probe the local environments of Bi and Ti atoms directly and reveal the ordering of Bi3+/Na+, displacements of the cations, oxygen-vacancy generation, and their migration pathways. Our EXAFS results demonstrate Bi- and Na-rich planes formation due to short-range ordering of Bi3+/Na+ in the perovskite units. Oxygen vacancies were found to be located in the Bi-rich planes. 23Na magic-angle spinning NMR experiments indicate that the local environments of Na atoms are disordered. The present work also provides an insight into the dramatically improved conducting behavior of Na0.5Bi0.49Ti0.98Mg0.02O2.965 and Na0.5Bi0.49Ti0.96Mg0.04O2.945 ceramics in terms of the local, long-range, and microstructure, which can be exploited to develop design principles for the syntheses of related oxides with even improved properties.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris