Music playlists have rapidly become one of the top services of streaming platforms: users do not need to spend time into deciding what to listen to, they just have to select the proper pre-compiled playlists composed by some music they know and some new songs close to their taste. However, users will continue to listen to playlists only if these conform to their musical tastes. Indeed, users listening habits might differ according to the activity they are performing while listening to music, and suggested playlists should reflect that. As there still are not in literature standard methods to produce customized playlists automatically, in this work in progress paper we focus on how to exploit users past music hearings to define genre listening habits in specific days of the week and hours of the day. We present our first investigation toward this direction by proposing a simple and computationally inexpensive method and by testing it using the Spotify listening history of volunteer users. We show that the method is promising and discuss several future working directions to improve the method and make it more effective.

Understanding users music listening habits for time and activity sensitive customized playlists / Furini, M.; Montangero, M.. - 2023-:(2023), pp. 485-488. (Intervento presentato al convegno 20th IEEE Consumer Communications and Networking Conference, CCNC 2023 tenutosi a usa nel 2023) [10.1109/CCNC51644.2023.10060462].

Understanding users music listening habits for time and activity sensitive customized playlists

Furini M.;Montangero M.
2023

Abstract

Music playlists have rapidly become one of the top services of streaming platforms: users do not need to spend time into deciding what to listen to, they just have to select the proper pre-compiled playlists composed by some music they know and some new songs close to their taste. However, users will continue to listen to playlists only if these conform to their musical tastes. Indeed, users listening habits might differ according to the activity they are performing while listening to music, and suggested playlists should reflect that. As there still are not in literature standard methods to produce customized playlists automatically, in this work in progress paper we focus on how to exploit users past music hearings to define genre listening habits in specific days of the week and hours of the day. We present our first investigation toward this direction by proposing a simple and computationally inexpensive method and by testing it using the Spotify listening history of volunteer users. We show that the method is promising and discuss several future working directions to improve the method and make it more effective.
2023
20th IEEE Consumer Communications and Networking Conference, CCNC 2023
usa
2023
2023-
485
488
Furini, M.; Montangero, M.
Understanding users music listening habits for time and activity sensitive customized playlists / Furini, M.; Montangero, M.. - 2023-:(2023), pp. 485-488. (Intervento presentato al convegno 20th IEEE Consumer Communications and Networking Conference, CCNC 2023 tenutosi a usa nel 2023) [10.1109/CCNC51644.2023.10060462].
File in questo prodotto:
File Dimensione Formato  
CCNC_WiP_23 (1).pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 660.4 kB
Formato Adobe PDF
660.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1305986
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact