Cementitious construction materials (mortars, concretes, etc.) are the most widely used materials worldwide, being second only to water. Although their CO2 footprint per kilogram is the lowest compared to all the other materials (asphalt, steel, plastics, glass, etc.), the massive consumption results in the overall contribution of cementitious construction materials to 8% of global CO2 emissions. In addition, a significant growth in the demand for cementitious building materials is expected in the coming years to meet population growth in emerging countries such as India, Latin America, and Africa and the consequent need for new structures and infrastructures. As a result, CO2 emissions from cement building materials are set to increase. To reduce the overall environmental impact of the construction sector, there is an urgent need for new and more sustainable construction materials based on alternative raw materials or optimized construction materials that allow less. This thesis displays different solutions to increase sustainability for cementitious construction materials while maintaining the performance required for their application. The suggested solutions can be grouped into three classes, namely, (i) reduction of non-renewable or synthetic raw materials and use of waste materials as secondary raw materials (ii) performance optimization of polypropylene fiber-reinforced concrete through the application of surface treatments to improve the fiber-to-matrix adhesion, (iii) use of low-carbon binders with low clinker content. The first class aims both to increase the sustainability of building materials and to address the rising issue of waste management by finding alternatives to disposal in landfills. The use of recycled aggregates from construction and demolition waste (CDW) is proposed as a partial replacement for natural aggregates in producing structural concrete with Rck 30MPa. Despite the severe limitations of use prescribed by the Italian building code, it was observed that both fine and coarse recycled aggregates could be successfully used as substitutes for natural ones. In addition, the maximum percentage of use (30%) was largely exceeded (up to 90%) while maintaining mechanical performance consistent with the strength class of the design concrete. Cork waste from the manufacturing of cork bottle caps was used as filler within lime-based mortars up to 5 wt% (65 vol%). It provided lightening and aesthetic properties to mortars without penalizing the mechanical and thermal insulation properties. In fact, despite the poor properties of cork, it promoted a reduction in mortar porosity and, through a gradual release of water, in mechanical properties. Recycling textile waste microfibers as reinforcement in cement allowed to remediate, per ton of fiber-reinforced cement, the equivalent amount of daily microplastics runoff in Paris. Products with greater toughness, durability and thermal insulation were obtained. For the second approach, coatings by sol-gel technique at different pH conditions were considered, as well as more sustainable treatments without the use of chemical reagents, such as UV-LED, UV-LASER, and corona discharge treatment. All treatments provided greater adhesion between polypropylene fibers and cementitious matrices, thus encouraging the use of fiber-reinforced composite materials with polymer fibers (lightweight, cheap, and durable) rather than those more commonly used in steel. Finally, highly sustainable structural concretes were designed through the use of innovative low-clinker binders (LC3). It has been demonstrated how it is possible to cut CO2 emissions per built-up area of buildings below the target limit of 100 kg CO2/m2 without penalizing design mechanical properties.
I materiali da costruzione a matrice cementizia (malte, calcestruzzi ecc.) sono i materiali più utilizzati al mondo, secondi solo all'acqua. Anche se il loro impatto ambientale per kg di materiale è il più basso di tutti gli altri (asfalto, acciaio, plastica, vetro ecc.), il loro massiccio consumo fa sì che essi contribuiscano globalmente all'8% di emissioni di CO2. Il loro utilizzo, e quindi le loro emissioni di CO2, subirà un significativo incremento per far fronte alla crescita demografica in Paesi emergenti quali India, America Latina e Africa ed al conseguente bisogno di nuove strutture ed infrastrutture. Per abbassare globalmente l’impatto ambientale del settore delle costruzioni, c'è un urgente bisogno di nuovi materiali da costruzione sostenibili basati su materie prime alternative o dalle proprietà ottimizzate che ne permettano di ridurne i quantitativi a parità di prestazioni. Il presente lavoro di tesi propone differenti soluzioni per aumentare la sostenibilità dei materiali da costruzione cementizi mantenendone le prestazioni necessarie alla finalità d’uso. Le soluzioni proposte si raggruppano in tre classi, ossia, (i) riduzione dell’utilizzo di materie prime esauribili o di sintesi e impiego di materie prime seconde (ii) ottimizzazione delle prestazioni di calcestruzzi fibrorinforzati (FRC) con fibre in polipropilene (PP) tramite l’applicazione di trattamenti superficiali atti a migliorare l’adesione tra fibra e matrice, (iii) impiego di leganti idraulici sostenibili a ridotto contenuto di clinker. La prima classe si propone il duplice obiettivo di aumentare la sostenibilità dei materiali da costruzione e di far fronte alla crescente problematica della gestione dei rifiuti, trovando soluzioni alternative al conferimento in discarica. L’uso di aggregati di riciclo derivanti da rifiuti di costruzione e demolizione viene proposto in sostituzione parziale agli aggregati naturali per la produzione di calcestruzzi strutturali con Rck 30MPa. Contrariamente alle forti limitazioni d’uso prescritte dalla normativa italiana, si è osservato che sia gli aggregati fini che grossolani potessero essere impiegati con successo in sostituzione a quelli naturali. In aggiunta, che la percentuale massima prescritta di impiego (30%) potesse essere largamente superata (fino al 90%) mantenendo prestazioni meccaniche soddisfacenti alla classe di resistenza di progetto. Sfridi della produzione di tappi in sughero sono stati impiegati come riempitivi all’interno di malte a base di calce fino al 5% in massa (65% in volume) ed hanno contribuito ad alleggerire le malte e a conferirne proprietà estetiche aggiunte senza penalizzare le proprietà meccaniche di isolamento termico. Il riciclo di microfibre tessili di scarto come rinforzo in cementi ha permesso di riciclare, per tonnellata di cemento FRC, l’equivalente delle microplastiche che piovono ogni giorno a Parigi. Si sono ottenuti prodotti con maggior tenacità, durabilità ed isolamento termico. Per il secondo approccio sono stati considerati ricoprimenti tramite tecnica sol-gel a differenti condizioni di pH, ma anche trattamenti più sostenibili, senza l’impiego di reagenti chimici, quali UV-LED, UV-LASER e scarica corona. Essi hanno permesso di ottenere una maggior adesione tra fibre in PP e matrici cementizie, favorendo così l’impiego di FRC con fibre in PP (leggere, economiche e durevoli) piuttosto che quelle più comunemente impiegate in acciaio. Infine, calcestruzzi strutturali altamente sostenibili sono stati realizzati tramite l’impiego di innovativi leganti a basso contenuto di clinker (LC3). È stato dimostrato come sia possibile tagliare le emissioni di CO2 per area edificata in calcestruzzo al di sotto del limite target di 100 kg CO2/m2 senza penalizzare le proprietà meccaniche di progetto.
Sostenibilità e decarbonizzazione dei materiali da costruzione cementizi / Beatrice Malchiodi , 2023 May 17. 35. ciclo, Anno Accademico 2021/2022.
Sostenibilità e decarbonizzazione dei materiali da costruzione cementizi
MALCHIODI, BEATRICE
2023
Abstract
Cementitious construction materials (mortars, concretes, etc.) are the most widely used materials worldwide, being second only to water. Although their CO2 footprint per kilogram is the lowest compared to all the other materials (asphalt, steel, plastics, glass, etc.), the massive consumption results in the overall contribution of cementitious construction materials to 8% of global CO2 emissions. In addition, a significant growth in the demand for cementitious building materials is expected in the coming years to meet population growth in emerging countries such as India, Latin America, and Africa and the consequent need for new structures and infrastructures. As a result, CO2 emissions from cement building materials are set to increase. To reduce the overall environmental impact of the construction sector, there is an urgent need for new and more sustainable construction materials based on alternative raw materials or optimized construction materials that allow less. This thesis displays different solutions to increase sustainability for cementitious construction materials while maintaining the performance required for their application. The suggested solutions can be grouped into three classes, namely, (i) reduction of non-renewable or synthetic raw materials and use of waste materials as secondary raw materials (ii) performance optimization of polypropylene fiber-reinforced concrete through the application of surface treatments to improve the fiber-to-matrix adhesion, (iii) use of low-carbon binders with low clinker content. The first class aims both to increase the sustainability of building materials and to address the rising issue of waste management by finding alternatives to disposal in landfills. The use of recycled aggregates from construction and demolition waste (CDW) is proposed as a partial replacement for natural aggregates in producing structural concrete with Rck 30MPa. Despite the severe limitations of use prescribed by the Italian building code, it was observed that both fine and coarse recycled aggregates could be successfully used as substitutes for natural ones. In addition, the maximum percentage of use (30%) was largely exceeded (up to 90%) while maintaining mechanical performance consistent with the strength class of the design concrete. Cork waste from the manufacturing of cork bottle caps was used as filler within lime-based mortars up to 5 wt% (65 vol%). It provided lightening and aesthetic properties to mortars without penalizing the mechanical and thermal insulation properties. In fact, despite the poor properties of cork, it promoted a reduction in mortar porosity and, through a gradual release of water, in mechanical properties. Recycling textile waste microfibers as reinforcement in cement allowed to remediate, per ton of fiber-reinforced cement, the equivalent amount of daily microplastics runoff in Paris. Products with greater toughness, durability and thermal insulation were obtained. For the second approach, coatings by sol-gel technique at different pH conditions were considered, as well as more sustainable treatments without the use of chemical reagents, such as UV-LED, UV-LASER, and corona discharge treatment. All treatments provided greater adhesion between polypropylene fibers and cementitious matrices, thus encouraging the use of fiber-reinforced composite materials with polymer fibers (lightweight, cheap, and durable) rather than those more commonly used in steel. Finally, highly sustainable structural concretes were designed through the use of innovative low-clinker binders (LC3). It has been demonstrated how it is possible to cut CO2 emissions per built-up area of buildings below the target limit of 100 kg CO2/m2 without penalizing design mechanical properties.File | Dimensione | Formato | |
---|---|---|---|
Beatrice Malchiodi_Tesi dottorato Def.pdf
Open Access dal 17/05/2024
Descrizione: Tesi definitiva Malchiodi Beatrice
Tipologia:
Tesi di dottorato
Dimensione
7.85 MB
Formato
Adobe PDF
|
7.85 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris