In the present paper, a comparison is conducted between three classical shell theories as applied to the linear vibrations of single-walled carbon nanotubes (SWCNTs); specifically, the evaluation of the natural frequencies is conducted via Donnell, Sanders, and Flügge shell theories. The actual discrete SWCNT is modelled by means of a continuous homogeneous cylindrical shell considering equivalent thickness and surface density. In order to take into account the intrinsic chirality of carbon nanotubes (CNTs), a molecular based anisotropic elastic shell model is considered. Simply supported boundary conditions are imposed and a complex method is applied to solve the equations of motion and to obtain the natural frequencies. Comparisons with the results of molecular dynamics simulations available in literature are performed to check the accuracy of the three different shell theories, where the Flügge shell theory is found to be the most accurate. Then, a parametric analysis evaluating the effect of diameter, aspect ratio, and number of waves along the longitudinal and circumferential directions on the natural frequencies of SWCNTs is performed in the framework of the three different shell theories. Assuming the results of the Flügge shell theory as reference, it is obtained that the Donnell shell theory is not accurate for relatively low longitudinal and circumferential wavenumbers, for relatively low diameters, and for relatively high aspect ratios. On the other hand, it is found that the Sanders shell theory is very accurate for all the considered geometries and wavenumbers, and therefore, it can be correctly adopted instead of the more complex Flügge shell theory for the vibration modelling of SWCNTs.

A Comparison of Shell Theories for Vibration Analysis of Single-Walled Carbon Nanotubes Based on an Anisotropic Elastic Shell Model / Strozzi, Matteo; Elishakoff, Isaac E.; Bochicchio, Michele; Cocconcelli, Marco; Rubini, Riccardo; Radi, Enrico. - In: NANOMATERIALS. - ISSN 2079-4991. - 13:8(2023), pp. 1-21. [10.3390/nano13081390]

A Comparison of Shell Theories for Vibration Analysis of Single-Walled Carbon Nanotubes Based on an Anisotropic Elastic Shell Model

Matteo Strozzi;Marco Cocconcelli;Riccardo Rubini;Enrico Radi
2023

Abstract

In the present paper, a comparison is conducted between three classical shell theories as applied to the linear vibrations of single-walled carbon nanotubes (SWCNTs); specifically, the evaluation of the natural frequencies is conducted via Donnell, Sanders, and Flügge shell theories. The actual discrete SWCNT is modelled by means of a continuous homogeneous cylindrical shell considering equivalent thickness and surface density. In order to take into account the intrinsic chirality of carbon nanotubes (CNTs), a molecular based anisotropic elastic shell model is considered. Simply supported boundary conditions are imposed and a complex method is applied to solve the equations of motion and to obtain the natural frequencies. Comparisons with the results of molecular dynamics simulations available in literature are performed to check the accuracy of the three different shell theories, where the Flügge shell theory is found to be the most accurate. Then, a parametric analysis evaluating the effect of diameter, aspect ratio, and number of waves along the longitudinal and circumferential directions on the natural frequencies of SWCNTs is performed in the framework of the three different shell theories. Assuming the results of the Flügge shell theory as reference, it is obtained that the Donnell shell theory is not accurate for relatively low longitudinal and circumferential wavenumbers, for relatively low diameters, and for relatively high aspect ratios. On the other hand, it is found that the Sanders shell theory is very accurate for all the considered geometries and wavenumbers, and therefore, it can be correctly adopted instead of the more complex Flügge shell theory for the vibration modelling of SWCNTs.
2023
17-apr-2023
13
8
1
21
A Comparison of Shell Theories for Vibration Analysis of Single-Walled Carbon Nanotubes Based on an Anisotropic Elastic Shell Model / Strozzi, Matteo; Elishakoff, Isaac E.; Bochicchio, Michele; Cocconcelli, Marco; Rubini, Riccardo; Radi, Enrico. - In: NANOMATERIALS. - ISSN 2079-4991. - 13:8(2023), pp. 1-21. [10.3390/nano13081390]
Strozzi, Matteo; Elishakoff, Isaac E.; Bochicchio, Michele; Cocconcelli, Marco; Rubini, Riccardo; Radi, Enrico
File in questo prodotto:
File Dimensione Formato  
Published paper.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 10.78 MB
Formato Adobe PDF
10.78 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1301885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact