In quantum field theory, arguably the most important class of observables which can be studied are scattering amplitudes, i.e. probability amplitudes for processes of scattering of particles (or strings) off each other. Scattering amplitudes are computed in perturbation theory as a sum of Feynman diagrams, mathematical quantities that depend on the nature of particles involved in the scattering process. In gauge theories, the individual Feynman diagrams can be factorized into a colour part, depending on the structure of the gauge group, and a kinematic part, depending on the momenta and polarizations of the external particles. In the recent years, the color-kinematics duality by Bern, Carrasco, and Johansson (BCJ) has been discovered for gauge theories. It represents a duality where, diagram-by diagram, the kinematic factors are in a representation such that they exhibit the same algebraic structures as their color counterparts. When organised in such a representation, the color factors can be replaced by another copy of kinematic factors. This procedure is known as double-copy and the resulting scattering amplitudes are amplitudes for gravitational theories. The great advantage of the double-copy construction is that, once a suitable representation in gauge theory has been achieved, gravitational amplitudes are computed automatically, and the complexity in the diagrammatic computation directly from Einstein Lagrangian is overcome. In this thesis, we detail recent results addressing BCJ duality and double-copy in the context of the worldline formalism. The worldline formalism represents an equivalent but independent way to study relativistic quantum mechanics with respect to the canonical quantum field theory. Essentially, in the worldline approach the scattering amplitudes are described no more through path integrals over fields but through path integrals over particle coordinates, i.e. integrals over space-time paths (worldline). In the recent years, the worldline approach has had a promising development and it is now used as a powerful tool for the computation of amplitudes at tree- and loop-level. In the first part of this manuscript, we review the way the worldline formalism is used in the computation of dressed propagators. In particular, tree-level scattering amplitudes for a scalar particle coupled to an arbitrary number of photons and a single graviton are computed using worldline techniques. Specifically, we consider the case of a scalar propagator dressed with two photons and one graviton, and, as the amplitude is fully off-shell, we use it to sew together the two external photons and to construct one-loop radiative corrections to the scalar-scalar-graviton vertex. We test our construction by verifying the on-shell gauge and Ward identities. In the second part of the thesis, we develop a novel procedure to construct Berends-Giele (BG) currents using the worldline formalism for one-loop gluon amplitudes (Bern-Kosower formalism). BG currents are fundamental building blocks for on-shell amplitudes in non-abelian gauge theory: applying the so-called pinch procedure of the BK formalism to a suitable special case, the currents are naturally obtained in terms of multi-particle fields in a colour-kinematic-dual representation. Using the same construction from the worldline Bern-Dunbar-Shimada formalism for one-loop gravity amplitudes, we naturally obtain gravity multi-particle polarisation tensors as tensor product of multi-particle fields in the BCJ gauge. This allows us to formulate a new prescription for double-copy gravity BG currents, and to obtain both the colour-dressed Yang-Mills BG currents in the BCJ gauge and the gravitational BG currents explicitly.
Nella teoria quantistica dei campi, una delle categorie più importanti di osservabili che può essere studiata sono le ampiezze di scattering, ovvero ampiezze di probabilità per processi di interazione tra particelle (o stringhe). Le ampiezze di scattering sono calcolate in teoria perturbativa come somma di diagrammi di Feynman, oggetti matematici con proprietà determinate dalle particelle coinvolte nel processo di scattering. Nelle teorie di gauge, i diagrammi di Feynman possono essere fattorizzati individualmente in un termine di “colore”, che dipende dalla struttura del gruppo di gauge, e in un termine “cinematico”, che dipendente dai momenti e dalle polarizzazioni delle particelle esterne. Negli ultimi anni Bern, Carrasco e Johansson (BCJ) hanno derivato per le teorie di gauge una dualità in cui, diagramma per diagramma, i fattori cinematici sono convertiti in una rappresentazione tale da mostrare le stesse strutture algebriche dei rispettivi termini di colore. In questa rappresentazione, i fattori di colore possono essere sostituiti da un'altra copia di fattori cinematici. Questa procedura è nota come “double copy” e le ampiezze di scattering così ottenute sono ampiezze per teorie di gravità. Il grande vantaggio della procedura di “double copy” è che, una volta ottenuta un’opportuna rappresentazione nella teoria di gauge, le ampiezze gravitazionali vengono calcolate automaticamente e le complessità nel calcolo diagrammatico direttamente dalla Lagrangiana di Einstein vengono evitate. In questa tesi, descriviamo in dettaglio recenti risultati che discutono la dualità BCJ e “double copy” nel contesto del formalismo worldline. Il formalismo worldline rappresenta un modo per studiare la meccanica quantistica relativistica alternativo rispetto alla canonica teoria dei campi. In particolare, nell'approccio worldline le ampiezze di scattering sono descritte non più attraverso integrali di cammino su campi ma tramite integrali di cammino su coordinate spazio-temporali. Negli ultimi anni, il formalismo worldline ha avuto uno sviluppo promettente ed è ora utilizzato come strumento efficace per il calcolo di ampiezze ad “albero” e a loop. Nella prima parte della tesi, esaminiamo il formalismo worldline come strumento per il calcolo di propagatori vestiti. In particolare, calcoliamo ampiezze di scattering ad albero per una particella scalare accoppiata a un numero arbitrario di fotoni e un singolo gravitone. Nello dettaglio, consideriamo il caso di un propagatore scalare vestito con due fotoni e un gravitone e, essendo l'ampiezza completamente off-shell, lo utilizziamo per cucire insieme i due fotoni esterni e per costruire così correzioni a un loop per il veritce scalare-scalare-gravitone. Testiamo la nostra procedura verificando la trasversalità e le identità di Ward. Nella seconda parte della tesi, sviluppiamo una nuova procedura per la costruzione di correnti di Berends-Giele (BG) utilizzando il formalismo worldline per ampiezze di gluoni a un loop (formalismo di Bern-Kosower). Le correnti BG sono elementi essenziali per la costruzione di ampiezze on-shell nelle teorie di gauge: applicando la procedura di “pinching” del formalismo BK, le correnti sono naturalmente ottenute in termini di campi multiparticellari nella rappresentazione BCJ. Usando la stessa procedure a partire dal formalismo worldline di Bern-Dunbar-Shimada per le ampiezze di gravità a un loop, otteniamo tensori di polarizzazione multiparticellare come prodotto tensoriale di campi multiparticellari nella rappresentazione BCJ. Questo ci consente di formulare una nuova prescrizione “double copy” per le correnti BG gravitazionali e di ottenere esplicitamente sia le correnti BG in Yang-Mills nella rappresentazione BCJ che le correnti BG gravitazionali.
Il Formalismo Worldline incontra il metodo Perturbiner: Calcolo di Ampiezze di Scattering in Teorie di Gauge e Gravità / Filippo Maria Balli , 2023 Mar 30. 35. ciclo, Anno Accademico 2021/2022.
Il Formalismo Worldline incontra il metodo Perturbiner: Calcolo di Ampiezze di Scattering in Teorie di Gauge e Gravità
BALLI, FILIPPO MARIA
2023
Abstract
In quantum field theory, arguably the most important class of observables which can be studied are scattering amplitudes, i.e. probability amplitudes for processes of scattering of particles (or strings) off each other. Scattering amplitudes are computed in perturbation theory as a sum of Feynman diagrams, mathematical quantities that depend on the nature of particles involved in the scattering process. In gauge theories, the individual Feynman diagrams can be factorized into a colour part, depending on the structure of the gauge group, and a kinematic part, depending on the momenta and polarizations of the external particles. In the recent years, the color-kinematics duality by Bern, Carrasco, and Johansson (BCJ) has been discovered for gauge theories. It represents a duality where, diagram-by diagram, the kinematic factors are in a representation such that they exhibit the same algebraic structures as their color counterparts. When organised in such a representation, the color factors can be replaced by another copy of kinematic factors. This procedure is known as double-copy and the resulting scattering amplitudes are amplitudes for gravitational theories. The great advantage of the double-copy construction is that, once a suitable representation in gauge theory has been achieved, gravitational amplitudes are computed automatically, and the complexity in the diagrammatic computation directly from Einstein Lagrangian is overcome. In this thesis, we detail recent results addressing BCJ duality and double-copy in the context of the worldline formalism. The worldline formalism represents an equivalent but independent way to study relativistic quantum mechanics with respect to the canonical quantum field theory. Essentially, in the worldline approach the scattering amplitudes are described no more through path integrals over fields but through path integrals over particle coordinates, i.e. integrals over space-time paths (worldline). In the recent years, the worldline approach has had a promising development and it is now used as a powerful tool for the computation of amplitudes at tree- and loop-level. In the first part of this manuscript, we review the way the worldline formalism is used in the computation of dressed propagators. In particular, tree-level scattering amplitudes for a scalar particle coupled to an arbitrary number of photons and a single graviton are computed using worldline techniques. Specifically, we consider the case of a scalar propagator dressed with two photons and one graviton, and, as the amplitude is fully off-shell, we use it to sew together the two external photons and to construct one-loop radiative corrections to the scalar-scalar-graviton vertex. We test our construction by verifying the on-shell gauge and Ward identities. In the second part of the thesis, we develop a novel procedure to construct Berends-Giele (BG) currents using the worldline formalism for one-loop gluon amplitudes (Bern-Kosower formalism). BG currents are fundamental building blocks for on-shell amplitudes in non-abelian gauge theory: applying the so-called pinch procedure of the BK formalism to a suitable special case, the currents are naturally obtained in terms of multi-particle fields in a colour-kinematic-dual representation. Using the same construction from the worldline Bern-Dunbar-Shimada formalism for one-loop gravity amplitudes, we naturally obtain gravity multi-particle polarisation tensors as tensor product of multi-particle fields in the BCJ gauge. This allows us to formulate a new prescription for double-copy gravity BG currents, and to obtain both the colour-dressed Yang-Mills BG currents in the BCJ gauge and the gravitational BG currents explicitly.File | Dimensione | Formato | |
---|---|---|---|
PhD___Thesis.pdf
Open access
Descrizione: Tesi definitiva Balli Filippo Maria
Tipologia:
Tesi di dottorato
Dimensione
937.57 kB
Formato
Adobe PDF
|
937.57 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris