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A B S T R A C T

In quantum field theory, arguably the most important class of observ-
ables which can be studied are scattering amplitudes, i.e. probability
amplitudes for processes of scattering of particles (or strings) off each
other. Scattering amplitudes are computed in perturbation theory as a
sum of Feynman diagrams, mathematical quantities that depend on
the nature of particles involved in the scattering process. In gauge the-
ories, the individual Feynman diagrams can be factorized into a color
part, depending on the structure of the gauge group, and a kinematic
part, depending on the momenta and polarizations of the external
particles. In the recent years, the color-kinematics duality by Bern,
Carrasco, and Johansson (BCJ) has been discovered for gauge theories.
It represents a duality where, diagram-by diagram, the kinematic
factors are in a representation such that they exhibit the same alge-
braic structures as their color counterparts. When organized in such
a representation, the color factors can be replaced by another copy
of kinematic factors. This procedure is known as double-copy and
the resulting scattering amplitudes are amplitudes for gravitational
theories. The great advantage of the double-copy construction is that,
once a suitable representation in gauge theory has been achieved, grav-
itational amplitudes are computed automatically, and the complexity
in the diagrammatic computation directly from Einstein Lagrangian
is overcome. In this thesis, we detail recent results addressing BCJ
duality and double-copy in the context of the worldline formalism.
The worldline formalism represents an equivalent but independent
way to study relativistic quantum mechanics with respect to the canon-
ical quantum field theory. Essentially, in the worldline approach the
scattering amplitudes are described no more through path integrals
over fields but through path integrals over particle coordinates, i.e.
integrals over space-time paths (worldline). In the recent years, the
worldline approach in flat and curved space has had promising devel-
opments and it is now used as a powerful tool for the computation of
amplitudes at tree- and loop-level also in the presence of gravity. Vari-
ous interesting avenues of applications have been recently considered,
such as the use of perturbiner and double copy techniques within
the worldline formalism as will be discussed shortly, as well as the
development of the so-called worldline quantum field theory formalism,
whereby classical scatterings of relativistic bodies are studied.

In the first part of this manuscript, we review the way the worldline
formalism is used in the computation of dressed propagators. In par-
ticular, tree-level scattering amplitudes for a scalar particle coupled to
an arbitrary number of photons and a single graviton are computed
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using worldline techniques. Specifically, we consider the case of a
scalar propagator dressed with two photons and one graviton, and,
as the amplitude is fully off-shell, we use it to sew together the two
external photons and to construct one-loop radiative corrections to the
scalar-scalar-graviton vertex. We test our construction by verifying the
on-shell gauge and Ward identities. In the second part of the thesis, we
develop a novel procedure to construct the so-called Berends-Giele (BG)
currents using the worldline formalism for one-loop gluon amplitudes
(Bern-Kosower formalism). The Berends-Giele currents are a set of
auxiliary fields introduced in the study of multiparticle scattering am-
plitudes in non-abelian gauge theory and are interpreted as tree-level
amplitudes with one leg off-shell. These currents are often used funda-
mental building blocks for on-shell amplitudes: applying the so-called
pinch procedure of the BK formalism to a suitable special case, the
currents are naturally obtained in terms of multiparticle fields in a
color-kinematic-dual representation. Using the same construction from
the worldline Bern-Dunbar-Shimada formalism for one-loop gravity
amplitudes, we naturally obtain gravity multiparticle polarization ten-
sors as tensor product of multiparticle fields in a color-kinematic-dual
representation. This allows us to formulate a revised prescription for
double-copy gravity BG currents, and to obtain both the color-dressed
Yang-Mills BG currents in a color-kinematic-dual representation and
the gravitational BG currents explicitly.
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In teoria quantistica dei campi, le ampiezze di scattering sono una
delle categorie di osservabili più importanti da studiare. Esse descrivo-
no la probabilità per processi di interazione tra particelle (o stringhe).
Le ampiezze di scattering sono calcolate in teoria perturbativa come
somma di diagrammi di Feynman, oggetti matematici con proprietà
determinate dalle particelle coinvolte nel processo di scattering. In
teorie di gauge, i diagrammi di Feynman possono essere fattorizza-
ti individualmente in un termine di colore, legato alla struttura del
gruppo di gauge, e un termine cinematico, legato ai momenti e alle
polarizzazioni delle particelle esterne. Recentemente, Bern, Carrasco e
Johansson (BCJ) hanno scoperto, per le teorie di gauge, una dualità che
permette di convertire i fattori cinematici in una rappresentazione che
mostra le stesse strutture algebriche dei termini di colore. In questa
rappresentazione, i fattori di colore possono essere sostituiti da un’al-
tra copia di fattori cinematici. Questa procedura è nota come double
copy e permette di ottenere ampiezze per teorie di gravità. Il vantaggio
di questa procedura è che, una volta ottenuta una rappresentazione
appropriata nella teoria di gauge, le ampiezze gravitazionali possono
essere calcolate automaticamente, evitando le complessità del calcolo
diagrammatico direttamente dalla Lagrangiana di Einstein. In questa
tesi, verranno esaminati e discussi recenti sviluppi riguardo la dualità
BCJ e la procedura di double copy all’interno del contesto del formali-
smo worldline. Il formalismo worldline è un metodo alternativo per lo
studio della meccanica quantistica relativistica che si basa sull’utilizzo
di integrali di cammino su coordinate spazio-temporali invece che su
campi. Questo approccio ha dimostrato di avere un grande potenziale
per la realizzazione di calcoli sia in spazi piatti che curvi, e si è rivelato
efficace per il calcolo delle ampiezze di scattering sia ad albero che
a loop, anche in presenza di effetti gravitazionali. Negli ultimi anni,
sono state sviluppate diverse applicazioni interessanti del formalismo
worldline, tra cui l’utilizzo di tecniche come perturbiner e double copy,
e la creazione di una nuova teoria chiamata worldline quantum field
theory, che si occupa dello studio delle ampiezze classiche di particelle
relativistiche.

Nella prima parte della tesi, esploriamo l’utilizzo del formalismo
worldline per calcolare propagatori vestiti. In particolare, calcoliamo le
ampiezze di scattering ad albero per una particella scalare accoppiata
a un numero variabile di fotoni e un singolo gravitone. In dettaglio,
consideriamo il caso di un propagatore scalare vestito con due fotoni
e un gravitone e, poiché l’ampiezza è completamente off-shell, la uti-
lizziamo per unire i due fotoni esterni e quindi costruire correzioni a
un loop per il vertice scalare-scalare-gravitone. Verifichiamo la validità
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della nostra procedura testando la trasversalità e le identità di Ward.
Nella seconda parte, proponiamo un nuovo metodo per generare le
correnti di Berends-Giele (BG) utilizzando il formalismo worldline per
le ampiezze di gluoni a un loop (formalismo di Bern-Kosower). Le
correnti di Berends-Giele sono un insieme di campi ausiliari utilizzati
nello studio delle ampiezze di scattering multi-particellari in teorie di
gauge non-abeliane e vengono interpretate come ampiezze a livello
albero con una gamba off-shell. Questi campi vengono spesso utilizzati
come blocchi fondamentali per costruire ampiezze on-shell: applican-
do la procedura di "pinching" del formalismo BK, le correnti vengono
naturalmente ottenute in termini di campi multiparticellari nella rap-
presentazione BCJ. Successivamente utilizziamo una procedura simile,
basata sul formalismo worldline di Bern-Dunbar-Shimada per le am-
piezze di gravità a un loop, per ottenere tensori di polarizzazione
multiparticellare come prodotto tensoriale di campi multiparticellari
nella rappresentazione BCJ. Ciò ci consente di formulare una nuova
prescrizione double copy per le correnti BG gravitazionali e di ottenere
esplicitamente sia le correnti BG in Yang-Mills nella rappresentazione
BCJ che le correnti BG gravitazionali.
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1
I N T R O D U C T I O N

1.1 an invitation to scattering amplitudes

Scattering amplitudes are a fundamental concept in quantum physics,
used to describe the probability amplitudes for the possible outcomes
of processes of scattering of fundamental particles off each other. These
amplitudes are essential for understanding the behavior of subatomic
particles and for testing the mathematical consistency of our physical
models, as well as for making concrete predictions about the possible
results in quantum scattering experiments.

The study of scattering phenomena has a long history, dating back
to the pioneering experiment that led to Rutherford’s discovery of the
atomic nucleus in the early 20th century. More recently, the discovery
of the Higgs boson at the Large Hadron Collider (LHC) [1] in 2012,
possible due to the precise measurements of scattering amplitudes,
was a major breakthrough in our understanding of the laws of Nature.
The need for accurate theoretical predictions for current and upcoming
experiments, as well as the desire of theoretical physicists to rigor-
ously test their models, has led to the development of highly efficient
methods for not only calculating amplitudes but also extracting physi-
cal quantities from them. The use of these advanced techniques has
revealed striking connections between theories relevant to particle scat-
tering at the LHC, and General Relativity. These connections between
scattering amplitudes play a crucial role in giving a new perspective
on black holes and the physics of gravitational waves, which have
been recently detected by the LIGO and VIRGO collaborations [2].
As a result of this new wave of breakthroughs, scattering amplitudes
are now established as a major new field in theoretical high-energy
physics.

The recent advancements and the new techniques developed for
the calculation of scattering amplitudes have a common thread: they
reveal that scattering amplitudes are much simpler than what one
naively expects from their construction in terms of Feynman diagrams.
Historically, diagrammatic calculation of scattering amplitudes has
been extremely challenging in various physical models. This is due
to the fact that the number of relevant Feynman diagrams increases
rapidly with both the number of particles involved in the scattering
process and the number of loops. Despite the complexity of the inter-
mediate expressions in the diagrammatic calculation, it is remarkable
that the finals results are often surprisingly simple. One of the most
iconic examples is the famous Parke-Taylor n-gluon tree amplitude,
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2 introduction

which illustrates the remarkable simplicity that can be achieved in
these calculations. By making use of the spinor helicity formalism and
focusing on color-ordered partial amplitudes in Yang-Mills theory, the
Maximally Helicity Violating (MHV) gluon amplitude at any number
of points is expressed as [3]:

AMHV
n (1+, . . . , i−, . . . , j−, . . . , n+) = ign−2 ⟨ij⟩4

⟨12⟩⟨23⟩ · · · ⟨n1⟩ . (1.1.1)

There is no need to understand the meaning of the symbols in the
expression above (which originates from spinor helicity formalism) to
appreciate the simplicity of the result, which is effectively independent
of the number of gluons. On the other hand, Feynman diagrams fail
to account for it: the number of Feynman diagrams necessary for
carrying out this computation is 4 at n = 4, 25 at n = 5, at n = 6
is already 220, and the number is exponentially growing. The take-
home message from this example is that scattering amplitudes have
intrinsically a hidden simplicity that cannot be fully captured by
Feynman diagrams. Therefore, it is crucial to continue searching for
more efficient methods to compute amplitudes, as this may lead to
the discovery of new symmetries that can explain this simplicity.

Over the last decades a number of powerful techniques for the
on-shell matrix elements calculation have emerged. Among the others,
here we mention the Britto-Cachazo-Feng-Witten (BCFW) recursion
relations [4, 5], where tree-level amplitudes of increasing multiplicity
are computed by using on-shell amplitudes from lower-level trees, and
generalized unitarity methods [6, 7], which allow for the systematic
construction of complex loop-level predictions using compact on-
shell tree-level data. In an independent development, the perturbiner
expansion method was introduced by Rosly and Selivanov [8, 9] as
an efficient method for obtaining tree-level scattering amplitudes for
a generic massless quantum field theory. In the case of Yang-Mills,
it can also be used to compute multiparticle trees with one particle
off-shell, which are referred to as Berends-Giele currents [10].

Recent studies have revealed a deeper understanding of the mathe-
matical structure of amplitudes in gauge theory through the develop-
ment of the Bern-Carrasco-Johansson (BCJ) duality [11]. This duality
investigates the connection between the color and kinematic factors
of the gauge theory amplitudes. When this duality is satisfied, the
color and kinematic parts of the contributing diagrams obey the same
algebraic relations, leading to a more organized and simplified repre-
sentation of the gauge theory amplitudes. This also implies that the
kinematic numerators of the amplitude are not independent, and that
by making use these relations, the number of required calculations to
obtain an n-point amplitude can be significantly reduced.

In addition to their applications in particle physics, scattering ampli-
tudes also play a crucial role in string theory, a theoretical framework
that attempts to unify all known forces of nature, including gravity. In
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string theory, point-like particles of particle physics are replaced by
one-dimensional objects, called strings, which interact with each other
as they propagate through space. Scattering amplitudes are thus used
to calculate the probabilities of different outcomes in these string in-
teractions. Because of mathematical richness in the structure of string
theory, the study of scattering amplitudes has led to the development
of new and powerful mathematical tools. One such example are the
so-called Kawai-Lewellen-Tye (KLT) relations between open string am-
plitudes and closed string amplitudes [12]. These relations, which
come from open-closed duality, state that the n-point tree-level closed
string scattering amplitudes can be expressed as a sum of products of
n-point open string partial amplitudes at the perturbative string level.

This result has severe implications on scattering amplitudes in
quantum field theories. Indeed, string theory is thought to be the
ultraviolet completion of (super)gravity theory. In the limit of infinite
tension, where α′ goes to zero, the strings become point particles, and
Einstein and Yang-Mills (YM) theories are recovered. In particular, in
the particle limit α′ → 0, KLT leads to relations between tree-level
graviton amplitudes and tree-level gluon amplitudes in Yang-Mills
theories, which are often summarized as

Gravity = (Gauge Theory)2. (1.1.2)

Such duality holds even though the structures of the non-abelian
Yang-Mills and the Einstein-Hilbert Lagrangians are rather different:
the former contains only up to four-point interactions while the latter
contains infinitely many vertices. Therefore the validity of the above
duality in the field theory limit has been a major puzzle for many
years. The connection between gravity and gauge theory starts already
at three points:

M3(1, 2, 3) = A3(1, 2, 3)Ã3(1, 2, 3), (1.1.3)

where M3 and A3 are the three-point gravity and gauge theory am-
plitudes accordingly, and complex momenta are used to avoid the
vanishing of the three-point amplitudes for real on-shell momenta.
For the four- and five-point amplitudes the relations keep still very
simple:

Mtree
4 (1, 2, 3, 4) =− s12 A4(1, 2, 3, 4)A4(1, 2, 4, 3) (1.1.4)

Mtree
5 (1, 2, 3, 4, 5) =s23s45A5(1, 2, 3, 4, 5)A5(1, 3, 2, 5, 4) + (3↔ 4),

(1.1.5)

where sij = (ki + k j)
2 = 2 ki · k j.

This remarkable simplicity in the construction of gravity amplitudes
has been also captured by Bern, Carrasco and Johansson, who recently
discovered an alternative direct way of constructing gravity amplitudes
from gauge theory ones. In detail, this construction, called double copy
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[13], allows for tree-level gravity amplitudes to be easily obtained
by replacing the color factors of the gauge theory amplitude with
another copy of the associated numerators, as long as the amplitude
numerators satisfy the color-kinematics duality. Specifically, at tree-
level, color dressed scattering amplitudes in Yang-Mills theories can
be written in the following form

Atree
n ∼∑

cjnj

∏ij
sij

. (1.1.6)

where the color factors ci are formed by combining the structure
constants of the gauge Lie algebra, the kinematic numerators ni are
determined by the momenta and polarizations of the external particles,
and the sij represent the propagators in different diagrams. Color-
kinematics duality states that the relations satisfied by the color factors
(as determined by Jacobi identities) are mirrored by the corresponding
kinematic numerators:

ci + cj + ck = 0 ⇔ ni + nj + nk = 0. (1.1.7)

The great advantage of having the amplitude in a color-kinematics
dual representation is that the calculation of the associated gravity
amplitude is automatic. The n-point gravity amplitudes are obtained
in terms of the gauge theory information simply by replacing the color
factors by another copy of the kinematic numerators:

Mtree
n ∼ ∑

j∈ trivalent

ñjnj

∏ij
sij

. (1.1.8)

At tree level, proofs exist [14–16] that the color-kinematics duality and
the double copy hold. However, at loop level, less is known but explicit
examples have shown that the duality between color and kinematics
and the double copy hold for a broad range of cases [17–21]. Among
the applications of the double copy prescription, we also mention the
computation of classical solutions for gravity [22–25], and relations to
gravitational-wave physics [26, 27].

In this brief overview, we have only presented a selection of the
methods and techniques developed in recent years for computing
scattering amplitudes. Many more exist —see [28] for an extensive
review. However, our hope is that this introduction has convinced the
reader of its main point: scattering amplitudes are relatively simple, or
at least more so than what was previously believed by the theoretical
physics community until few decades ago. The greatest challenge
facing the field of scattering amplitudes in the future is understanding
the underlying reasons for this simplicity. Eventually, we will uncover
more fundamental principles, that will shed light on this crucial prob-
lem, and that will lead us to a deeper understanding of the quantum
laws of Nature.
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1.2 a glimpse into the worldline formalism

The operatorial approach of non-relativistic quantum mechanics was
developed in the late twenties by a number of physicists, including
Paul Dirac and David Hilbert. This approach allowed for a unification
of the earlier, separate descriptions of quantum mechanics based on
wave mechanics (Schrödinger) and matrix mechanics (Heisenberg).
In 1948, Richard Feynman proposed a new method [29] for under-
standing non-relativistic quantum mechanics that was based on the
concept of path integrals. This approach, while mathematically equiv-
alent to the operatorial approach, was distinct, as it was derived from
the principle of least action, rather than Hamiltonian dynamics. The
path integral formulation provides an intuitive way to understand
quantum mechanics by viewing the system as the sum of all possible
paths between two points at different times, each path weighted by
a complex phase factor. Two years later, Feynman started publishing
his work that laid the foundation for relativistic Quantum Field The-
ory (QFT) and specifically Quantum Electroynamics (QED) through
the use of Feynman diagrams. However, at the same time he also
developed a different formalism, later called worldline formalism. Here
the QED scattering amplitudes are described no more through path
integrals over fields but through relativistic particle path integrals, i.e.
path integrals over particle coordinates. Essentially, both the worldline
formalism and (second quantized) quantum field theory are ways
to study relativistic quantum mechanics, but they are independent
of each other. In the worldline formalism, both time and space co-
ordinates are treated as operators and the proper time is used as a
parameter, while in quantum field theory, they are treated as parame-
ters, that label the different kinds of fields. Thus, in the path integral
approach, the worldline formalism becomes an integral over spacetime
paths, worldlines —see figure 1.1.

Initially, the worldline approach was not widely recognized as a
promising method and was not used extensively in research for several
years after its introduction. The potential of the worldline formalism
to improve on standard field theory methods was recognized few
decades later in the early nineties, which coincides with a period
of rapid development of string theory. This was not a coincidence.
Indeed, similarly to the worldline formalism, string theory is a first
quantized approach, i.e. the coordinates of the string in space are
promoted to operators and the canonical quantization is realized by
imposing commutation relations among them. The study of string
theory is driven in part by its property to converge with quantum
field theory as the size of the string shrinks to zero. In the 1970s-1980s,
many advancements in field theory have been made by examining this
point-particle limit of strings. As examples, here we mention the calcu-
lation made in 1982 by Green, Schwarz and Brink [30], who obtained
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the one-loop four-gluon amplitude in N = 4 Super Yang-Mills theory
from the low energy limit of superstring theory, and the computation
in 1988 of the one-loop β-function for Yang-Mills [31–33]. A systematic
investigation of the infinite string tension limit was undertaken in
the following years by Bern and Kosower [34, 35]. They succeeded
in deriving a novel type of parameter integral representation for the
on-shell n-gluon amplitude in Yang-Mills theory, at the tree- and one-
loop level. Moreover, they established a set of rules which allows one
to construct this parameter integral, for any number of gluons and
choice of helicities, without referring to string theory any more. The
efficiency of these rules has been demonstrated by the first complete
calculation of the one–loop five–gluon amplitude. Motivated by this
wave of new results, and by the challenges of computations in string
theory, this set of questions naturally arose:

Is it possible to rederive these results completely inside particle theory? If
so, what form should this theory take? Would it be more efficient than the
standard field theory and Feynman diagrams, at least for specific calculations?

The reader should not be surprised by a positive answer. The world-
line formalism, as mentioned, represents a first-quantized formulation
of quantum field theory (instead of the usual second-quantized ap-
proach), and can be tought as string-inspired in the sense that it has a
natural interpretation in terms of a one dimensional field theory in a
first-quantized formulation. Thus, it’s ideal for adapting string theory
techniques for specific calculations in field theory.

With this in mind, Strassler, in the early nineties, began investigating
seriously the worldline formalism [36]. In particular, he showed that
ordinary perturbation theory can be obtained in the first quantized
approach, simply by mimicking string perturbation theory. Let us
demonstrate the one-loop scalar QED effective action as an example.
This can be represented through a worldline path integral as

Γ[A] =
∫ ∞

0

dT
T

e−Tm2
∫

Dx(τ) e−
∫ T

0 dτ( 1
4 ẋ2+ie ẋ·A). (1.2.1)

By rewriting the Maxwell field Aµ(x) as a sum of plane waves,

Aµ(x) =
n

∑
i=1

ε iµ eiki ·x, (1.2.2)

and performing some algebraic manipulations, one is able to obtain
a master formula that encodes a closed expression for the one-loop
n-photon amplitude in scalar QED. At this stage, we are not interested
in its mathematical formulation (which will be covered later in the
thesis), but there are some key points we want to highlight here:

• The formula does not involve loop momentum, which reduces
the number of kinematic invariants from the beginning, and
allows for an efficient use of the spinor helicity method.
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x

x′

Fig. 1.1: In the worldline approach, the path integrals are performed over
spacetime coordinates, and no more over fields, as usually happens in stan-
dard (second quantized) field theory.

• The formula results in a set of parameter integrals that define the
ordering in which the external photon legs merge into the loop.
However the complete integral does not represent any particular
Feynman diagram, with a fixed ordering of the external legs,
but the sum of them. In other words, we are not referring to
Feynman diagrams anymore, and our description has a superior
organization of gauge invariance.

• The integral representation of the amplitude is valid off-shell.
Thus, we can sew together a pair of legs, and obtain a parame-
ter integral representing the complete two-loop (n− 2)-photon
amplitude.

Those are all important steps in the quest for simplicity, which is
crucial for the current research in scattering amplitudes. As a draw-
back, the description of interactions among particles appears to be
less intuitive compared to the second-quantized approach and thus,
innovative methods had to be derived to overcome this challenge.

Since the work by Strassler, who rederived the Bern-Kosower master
formulas directly from point particle path integrals (for a compre-
hensive review see [37]), many extensions and applications of the
worldline formalism have been considered: multiloop computations
[38], the numerical worldline approach to the Casimir effect [39], the
worldline formalism in curved spacetime [40–42], photon-graviton mix-
ing at one loop [43], as well as applications to noncommutative QFT
[44, 45], Standard Model physics [46] and its grand-unified extensions
[47]. More recently, a classical double-copy relation was developed
[48] in the context of a worldline QFT description [49] of the classical
gravitational scattering of massive bodies.

In our work, we try to exploit recent develpements in worldline tech-
niques. Our analysis will initially focus on the calculation of dressed
propagators in curved spacetime in an efficient manner. Then, we
will integrate the worldline approach with recent developments in
scattering amplitudes, such as color-kinematics duality and double
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copy. The goal of this manuscript is to convince the reader that the
worldline formalism not only provides a concrete alternative to stan-
dard field theory, but also has a concrete role in recent developments
and techniques in scattering amplitudes.

1.3 outline

This work is divided into four main parts.

• The first part provides an overview of the string-based formal-
ism, together with recent developments in scattering amplitudes
such as color-kinematics duality and double copy, and Berends-
Giele currents calculation method using the perturbiner method.
Chapter 2 offers a brief summary of the string-inspired or world-
line formalism in perturbative quantum field theory and its
use as an alternative computation tool for effective actions and
dressed propagators, similar to string perturbation theory, with-
out the use of common mathematical tools and structures in
standard field theory. The chapter also includes examples of
one-loop amplitudes and tree-amplitudes calculation in QED
and gravity using the Bern-Kosower formalism, which will be
a key element in this manuscript. Chapter 3 reviews the basics
of the color-kinematics duality and double copy as recent and
significant developments in scattering amplitudes. This includes
reviewing algebraic tools for dealing with the color structure of
Yang-Mills theory, rederiving relations among partial amplitudes
(Kleiss-Kuijf and BCJ) and introducing the main ideas behind
the color-kinematics duality and the double copy prescription.
Chapter 4 reviews the Berends-Giele recursion relations and
their application in computing tree-level scattering amplitudes
in Yang-Mills theory, connecting it to the perturbiner technique
that can be used to obtain generating functions for all tree-level
scattering amplitudes in a given theory.

• In the second part, we present recent results on scattering ampli-
tudes in scalar QED within a curved background, i.e. we include
the integration of gravity inside dressed propagators from the
worldline approach. In detail, in chapter 5, we compute the tree-
level scattering amplitudes of a scalar particle interacting with n
photons and a single graviton. The worldline formalism is ap-
plied to calculate the irreducible part of the amplitude where all
photons and gravitons are attached to the scalar line. Also, a tree
replacement rule is introduced to construct the reducible parts
of the amplitude. Chapter 6 covers the calculation of off-shell
one-loop QED correction to the graviton-scalar vertex in any
covariant gauge using the formalism developed in the previous
chapter. The process includes re-deriving the off-shell ampli-
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tude for two-photon and one-graviton and applying the sewing
procedure to compute the radiative correction.

• In the third part, we use standard worldline techniques to de-
velop new methods for computing Berends-Giele currents, which
reveal interesting connections to color-kinematics duality and
the double copy. In chapter 7, we introduce a novel procedure
for constructing Berends-Giele currents using the Bern-Kosower
formalism for one-loop gluon amplitudes by applying the pinch
procedure of that formalism to a specific case. The resulting
currents are expressed in terms of multiparticle fields and obey
the color-kinematics duality. Chapter 8 generalizes the previous
result by providing a new method for computing the gravity
polarization tensor as a product of multiparticle fields using the
Bern-Dunbar-Shimada formalism for one-loop gravity ampli-
tudes. We also introduce a revised prescription for double-copy
for gravity Berends-Giele currents and show how to obtain them
explicitly in the BCJ gauge, i.e. in a representation such that
color-kinematics duality is obeyed.

• The thesis concludes with a final chapter, where we summarize
the main results and suggest potential avenues for future re-
search, as outlined in chapter 9. Additionally, an appendix is
provided, containing supplementary information: the detailed
calculation of a scalar propagator dressed with two photons and
one graviton in appendix A, a proof of transversality on the
graviton line in scalar amplitudes with two or fewer photons
and one graviton in appendix B, a list of Feynman integrals
used for the computation of radiative corrections to the graviton-
scalar vertex in QED, along with reduction formulae for specific
integrals in appendix C, the color-dressed Berends-Giele polar-
ization current in the BCJ gauge with the corresponding double
copy version for gravity in appendix D.
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2
T H E S T R I N G - I N S P I R E D F O R M A L I S M

In this chapter we give a short review of the basics for the application
of the so-called string-inspired, or worldline, formalism to perturbative
quantum field theory. The formalism offers the possibility of comput-
ing effective actions and dressed propagators in a way which is similar
in spirit to string perturbation theory, and avoids the use of many
of the mathematical tools and structures that are commonly used in
standard second-quantized field theory. Here we present an overview
of the fundamentals in the calculation of string scattering amplitudes
and we also provide an intuitive explanation of how this relates to the
worldline formalism. Later we will present a considerable number of
sample calculations: effective actions for the perturbative calculation of
one-loop amplitude with n external particles (gluons or gravitons), and
dressed propagators for the computation of tree-amplitudes, focusing
on QED and gravity.

2.1 string scattering amplitudes in a nutshell

The basic tool for the calculation of string scattering amplitudes is the
Polyakov path integral. In the simplest case, the closed bosonic string
propagating in flat spacetime, this integral is of the form

⟨V1 · · ·Vn⟩ ∼∑
top

∫
Dh

∫
DX(σ, τ)V1 · · ·Vne−S[X,h], (2.1.1)

where X(σ, τ) are the coordinates of the string. This path integral
corresponds to first quantization in the sense that it is performed
over the spacetime coordinates of a single string that propagates in a
Minkowski background. The worldsheet action in the path integral is
the Polyakov action, which is given by

S[X, h] = − 1
4πα′

∫
dσdτ

√
−hhαβ∂αXµ∂βXνηµν, (2.1.2)

where h ≡ det hαβ and 1/2πα′ is the string tension. The Polyakov
action corresponds to a two-dimensional conformal field theory de-
scribing the worldsheet of a string in string theory. The parameters σ, τ

in (2.1.1) parametrize the worldsheet surface swept out by the string
in its motion —see figure 2.1, and the integral

∫
DX(σ, τ) has to be

performed over the space of all embeddings of the string worldsheet
with a fixed topology into spacetime. The tensor hαβ determines a
specific worldsheet metric and the Polyakov path integral, through∫
Dh, instruct us to sum over all the possible values of it. At the same

13
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σ

τ

Fig. 2.1: Worldsheet swept out by a string in its motion in Minkowski space.
The worldsheet is locally parametrized by the coordinates (τ, σ), where τ is
time-like while σ is space-like.

time, worldsheets can have different topologies, and we have to sum
over these according to ∑top. This sum gives rise to a perturbative
expansion in string theory —we will see later that this corresponds
to a loop expansion in quantum field theory in the particle limit of
string theory. The weight of the different surfaces in the perturbative
expansion is understood once we make explicit the dependence over
the string coupling constant gs inside (2.1.1). In particular, the power
that accompanies each gs depends on the topology of a specific world-
sheet and on whether we are dealing with open or closed strings. For
closed strings, the worldsheets have no boundary and each topology
is weighted by a factor

(gs)
2(g−1) . (2.1.3)

Here the parameter g describes the genus of a given surface. After a
conformal map, the worldsheets involved in the sum inside (2.1.1) are
transformed into Riemann surfaces with specific genus. For example,
the tree-level scattering of closed strings corresponds to a worldsheet
with the topology of a sphere: the genus is g = 0 and the amplitudes
are proportional to 1/g2

s . One-loop scattering corresponds to toroidal
worldsheets, where g = 1, and have no power of gs —although, ob-
viously, these are suppressed by g2

s relative to tree-level processes.
Higher terms in the expansion are associated to values g > 1 and
correspond to higher powers of gs. Thus, the perturbative expansion
in string theory becomes a sum over Riemann surfaces of increasing
genus, as depicted in the first line of figure 2.2 for the closed string
case.

On the other hand, open string worldsheets have topologies with
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Fig. 2.2: The loop expansion in perturbation theory for closed (top) and open
(bottom) strings.

boundaries and the string coupling constant has to be redefined ac-
cording to1

g2
open = gs. (2.1.4)

The expansion for open string scattering becomes an expansion in the
number of boundaries added to the worldsheet. Adding a boundary
corresponds to the addition of a strip to the worldsheet, i.e. the emis-
sion and absorption of a virtual open string. The disc is weighted by
1/gs; the annulus has no factor of gs and so on.

The last element in (2.1.1) that has not been analyzed yet are the
terms V1 . . . Vn: these are string vertex operators and represent the
external scattering states of the string. The external states of the string
represents points in the correlation function taken to infinity: xi → ∞,
and are assigned to some spacetime momentum pi —see figure 2.3.
Using the state-operator map, it is known that each of these states at
infinity is equivalent to the insertion of an appropriate vertex operator
Vi on the worldsheet. Therefore, to compute the scattering amplitude
we use a conformal transformation to bring each of these infinite legs
to a finite distance. The end result is a worldsheet punctured with
vertex operators where the legs used to be. In the case of the open
string, which is the more relevant one for our discussion, the vertex
operators are inserted on the boundaries. For instance, for the open
string at one-loop level the worldsheet is an annulus as shown in the
second line of figure 2.2, and a vertex operator may be integrated
along either one of the two boundary components. On the other hand,
at tree level the worldsheet is a disk and there is only one boundary
where the vertices can be integrated —see figure 2.4. An important
observation is that the constraint of Weyl invariance imposes that
vertex operators are necessarily on shell. This has important conse-
quences, as this is the reason why we can only compute on shell

1 The string coupling constant appears by adding to the Polyakov action an extra
topological invariant term. The presence (or absence) of boundaries determines how
the string coupling constant is computed —for example, see [50] for more details.
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Fig. 2.3: In a string scattering process, the external legs are taken to infinity
to suppress the redundancy of the gauge transformations.

correlation functions in string theory. This constraint is lifted in the
(particle-derived) worldline formalism, as we shall see later.

The vertex operators most relevant for open string calculations are
of the form

Vϕ[k] =
∫

dτ eik·X(τ) (2.1.5)

VA[k, ε, a] =
∫

dτ Taε · Ẋ(τ)eik·X(τ). (2.1.6)

They represent a tachyon and a gauge boson particle with definite
momentum k and polarization vector ε. Ta is a generator of the
gauge group in a specific representation. The integration variable
τ parametrizes the boundary in question. Since the action is Gaussian
(note that he Polyakov action in (2.1.2) is quadratic in the coordinate
x), the path integral

∫
Dx can be performed using Wick contractions

of type
⟨Xµ(τ1)Xν(τ2)⟩ = G(τ1, τ2)η

µν, (2.1.7)

where G denotes the Green’s function for the Laplacian on the world-
sheet, restricted to its boundary, and ηµν the Lorentz metric. By ex-
ploiting the conformal invariance of the path integral, the remaining
integration over the infinite dimensional space of the worldsheet met-
rics h can be reduced to space of conformal equivalent classes, which
is finite dimensional. The actual integration domain, called moduli
space, is somewhat smaller, since a further discrete symmetry group
has to be taken into account, i.e. modded out.

The uses of the Polyakov path integral are not restricted to the calcula-
tion of scattering amplitudes. It has been shown [51] that it is equally
useful for the calculation of string effective actions. For example, an
open string propagating in the background of a Yang-Mills field Aµ
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Fig. 2.4: Vertex operators inserted on the single boundary of the disk (left)
and on the two boundaries of the annulus (right).

would generate an effective action for this background field given by
the following modification of the Polyakov path integral,

Γ[A] ∼∑
top

∫
Dh

∫
DX(σ, τ)e−S0−SI , (2.1.8)

where
SI =

∫
dτ ie Ẋµ Aµ(X(τ)), (2.1.9)

and S0 is the standard Polyakov action introduced in 2.1.2. For sim-
plicity, we have written the interaction term for the abelian case; in the
non-abelian case, a color trace and path ordering are required, as it
will be discussed later.

2.2 worldline as a string-inspired approach

One of the main motivations for the study of string theory, and string
theory amplitudes in particular, is the fact that it reduces to quantum
field theory in the low energy limit, i.e. in the α′ → 0 limit where the
size of the string shrinks to zero and the tension becomes infinite [52–
55]. In this limit all the massive modes of the string are suppressed, and
only the massless modes survive. These modes are easily identified
as the standard massless particles in field theory, such as gluons,
gravitons and massless spin-1

2 particles, and their interactions take
place in a way that is consistent with standard field theory.

Despite the complexity of computing scattering amplitudes in string
theory, the analysis of their field theory limit is still meaningful: the
techniques available in string theory are extremely different and this
brings to interesting insights on field theory amplitudes. In ordinary
quantum field theory perturbative calculations are usually performed
using second quantization, and Feynman diagrams. This is not the
case in string theory, where amplitudes are computed in first quanti-
zation using the Polyakov path integral (2.1.1), which describes the
propagation of a single string in a given background through the
spacetime coordinate Xµ(σ, τ). In the low energy limit, thus we expect
to obtain a description of the scattering amplitudes in the first quanti-
zation scheme. The major focus of this section is to show that this is
indeed the case, and some hints will be given in order to understand
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Fig. 2.5: Infinite string tension limit of a string diagram.

how and when first quantization can help in improving standard field
theory techniques.

As seen in the previous section, string scattering amplitudes are com-
puted using integrals of the form (2.1.1). After fixing the topology of
the worldsheet and utilizing conformal symmetry, the amplitude is
calculated by integrating over the moduli space punctured with the
external vertices. At this stage, the amplitude is in a form suitable
for performing the α′ → 0 limit. In this limit, only certain corners of
the moduli space contribute and the amplitude splits into a number
of explicit parameter integrals that eliminate all contributions due to
propagating massive modes, and represent the corresponding field
theory amplitude. Visually, as α′ approaches 0, the Riemann surfaces
get squeezed to specific Feynman graphs. However, this process is
complicated: several Feynman diagrams with different topologies can
be generated from a single Riemann surface, and this proliferation gets
worse at higher orders —see figure 2.5. As an additional fact, in gauge
theory or gravity quartic and higher order vertices are involved, and
this leads to many more possible diagrams. On the other hand, the
generating string theories have a much smaller number of topologies
then the limiting field theories. This is one of the major motivation for
the introduction of string-inspired techniques for the computation of
field theory quantities, as it will be clear from some insights presented
in this manuscript.

The mathematical details of the computation of the field theory limit
α′ → 0 in string amplitudes go beyond the scope of the thesis. Here we
just mention some relevant results that will be helpful in the proceed-
ings of the calculations. In particular, it is crucial for our purposes the
analysis of the one-loop n-gluon amplitude carried out by Bern and
Kosower in [35]. By an explicit analysis of the infinite string tension
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limit2, they derived a novel type of parameter integral representation
for the on-shell n-gluon amplitude in Yang-Mills theory at one-loop
level. In particular, they established a set of rules which allows one to
construct the amplitude for any number of gluons without referring
to string theory any more. Once this set of rules has been defined, it
was natural to compare them with the corresponding field theoretic
Feynman rules, and some advantages were immediately clear: absence
of loop momentum, that reduces the number of kinematic variables
and allows for an early use of the spinor helicity formalism, and nice
combination with spacetime supersymmetry, that smoothly relates
amplitudes with different particles running into the loop. Gauge in-
variance is also guaranteed in a superior way. The efficiency of the
so called Bern-Kosower formalism has been demonstrated by the first
complete calculation of the one–loop five–gluon amplitude in [56].
We will give a comprehensive overview of the Bern-Kosower rules in
section 2.3.3. The formalism has been extended to gravity from the
field theory limit of closed strings and a similar set of rules is available
for the computation of graviton scattering [57]. Those have been used
for the first calculation of the complete one–loop four–graviton ampli-
tude in quantum gravity [58]. This extension to gravity, known as the
Bern-Dunbar-Shimada formalism, will be reviewed in section 2.3.5.

As it has been pointed out earlier in this section, the Bern-Kosower
rules do not refer to string theory anymore, so it is natural to wonder
if an independent re-derivation can be carried out starting directly
from a particle point of view. For this purpose,obviously we need a
first-quantization description of standard field theory. This is not a
big issue, as already in 1950 [29] Richard Feynman presented such
a formalism for the case of scalar quantum electrodynamics. Here
the scattering amplitude for a charged scalar particle that moves un-
der the influence of the external potential Aµ, from point xµ to x′µ in
Minkowski space is given by3

〈
ϕ(x′)ϕ̄(x)

〉
A
=
∫ ∞

0
ds e−

1
2 ism2

∫ x(s)=x′

x(0)=x
Dx(τ) e−

∫ s
0 dτ( i

2 ẋ2−ie ẋ·A(x(τ))).

(2.2.1)

We will give a formal derivation of this formula later in section 2.4.1. In
the equation above, the parameter s can be identified with a Schwinger
proper time, that is used to construct a path integral representation
of the amplitude. The path integral is performed over all the possible

2 They have used a specific heterotic string model containing SU(N) Yang-Mills theory
in the α′ limit. This allows for a consistent reduction to four dimensions, but the
representation of the amplitude is more elaborate.

3 In the original Feynman’s formula, an additional interaction term was present,
describing an arbitrary number of virtual photons emitted and re-absorbed along the
trajectory of the particle. Here we omit this term, as its contribution won’t play any
role in the results showed in the manuscript.
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Fig. 2.6: Feynman diagram representing the interaction of a scalar particle
with a Maxwell background field in the path integral (2.2.1).

trajectories running from the point x to x′ in the fixed proper time s.
The path integral action contains a familiar kinetic term, plus an inter-
action term, that corresponds to the coupling with an external gauge
field. In second quantization, this corresponds to the diagrammatic
representation in figure 2.6.

With a small effort, we can extend the Feynman’s formula (2.2.1)
to path integrals for closed loops, and obtain a representation of the
one-loop effective action for the Maxwell field:

Γ[A] =
∫ ∞

0

dT
T

e−Tm2
∫

x(0)=x(T)
Dx(τ) e−

∫ T
0 dτ( 1

4 ẋ2+ie ẋ·A(x(τ))). (2.2.2)

Here the Schwinger proper time has been rescaled and Wick rotated
according to s → −i2T, for consistency with formulas that will be
used later in the manuscript. Worthy of note is the path integrals
performed now over a closed trajectory, i.e. the limits of the trajectory
coincide xµ(0) = xµ(T). This formula will be better investigated in sec-
tion 2.3.1, where it will be derived from standard field theory results.
It is natural now to compare (2.2.2) with the string theory formula
(2.1.8): the former is clearly the infinite string tension limit of the latter.
We have achieved our first glimpse of the origin of the string-inspired
formalism in field theory.

The path integral in (2.2.2) has been promptly generalized to vari-
ous cases, like spinor quantum electrodynamics and supersymmetric
extensions [59–64], and this first quantized approach has gained a
wide use in literature: among the others, we mention attempts to
nonperturbative computations [65–68] and applications to the cal-
culations of anomalies. In fact the use of particle path integrals to
compute anomalies has already been known since the seminal work
of Alvarez-Gaume and Witten [69, 70]. However, we want to keep the
correspondence with string theory going on and we show how the
first quantized formalism can turn into an extremely helpful tool for
perturbative calculations in scattering amplitudes and effective actions.
The basic idea is simple: we evaluate the path integrals in precisely
the same way as one calculates the Polyakov path integral in string
theory, i.e. in a one-dimensional perturbation theory. As an example,
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we consider the scalar loop path integral defined in (2.2.2)4 and focus
on the interaction term. We can expand it according to:

e−
∫ T

0 dτ ieẋµ(τ)Aµ(x(τ)) =
∞

∑
n=0

(−ie)n

n!

n

∏
i=1

∫ T

0
dτ ieẋµ(τi)Aµ(x(τi)). (2.2.3)

We can interpret each term of the sum as a Feynman diagram describ-
ing a fixed number of interactions of the scalar loop with the external
field —see figure 2.7. Now we specialize the background field Aµ(x)
to a sum of plane waves with definite polarizations

Aµ(x) =
n

∑
i=1

ε iµ eiki ·x, (2.2.4)

and we pick out the term containing every ε i once. This procedure is by
no means trivial: according to standard field theory, the path integral
now corresponds exactly to the one-loop n-photon correlator, where
the external photon lines are already truncated [71]. Furthermore, we
can define a photon vertex operator

VA[k, ε] = −ie
∫ T

0
dτ ε · ẋ(τ)eik·x(τ). (2.2.5)

This corresponds exactly to one introduced for string amplitudes
in (2.1.6), where we take Ta ∼ 1 for abelian theories. The one-loop
n-photon correlator now reads

Γ[n] =
∫ ∞

0

dT
T

e−Tm2
∫

Dx(τ)
(

VA[k1, ε1] · · ·VA[kn, εn]
)

e−
1
4

∫ T
0 dτ ẋ2

.

(2.2.6)

This amplitude is interpreted as the field theory limit of the corre-
sponding string amplitude, where the photon vertex operators are
inserted on a circle instead than on the boundary of the annulus (see
the annulus in figure 2.4). However, there is an important difference
that is worth mentioning: the path integral 2.2.2 is a field-theoretic
quantity and no on-shellness conditions have been imposed to obtain
it, as it will be sketched in section 2.3.1. This is not true in string theory,
where vertices for the external states of type (2.1.6) have necessary
to be on-shell in order to guarantee Weyl invariance. This is a huge
distinction, as (2.2.2) describes an effective action for photons that, in
principle, are off-shell. We will exploit some advantages of this prop-
erty later in the manuscript. Also, we mention that the path integral in
(2.2.2) has now become Gaussian, and can be solved with little effort
taking into account the appropriate boundary conditions. We will
detail the calculation later in section 2.3. At this stage, the take-home
message is that the first quantized approach for the calculation of

4 An identical procedure can be carried out if we consider the scalar propagator instead
of the loop.
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+ + + . . .

Fig. 2.7: Expansion of the path integral in powers of the background field.

scattering amplitudes is really string-inspired, in the sense that we ob-
tain formulae that precisely mimic the structure of the corresponding
string amplitudes. On the other hand, now we are dealing with path
integral performed on the line (1 + 0 dimension) and no more on a
worldsheet (1 + 1 dimensions), and the resulting calculations will be
less complex, as it will be clear in the following.

2.3 effective actions from the worldline

In this section we are going to review the fundamentals of the world-
line description of effective actions. In 2.3.1 we will formally re-derive
worldline formulae for a scalar particle coupled with a set of different
external fields, focusing our attention on background gauge fields. In
2.3.2 we will specialize our study to the coupling with a background
Maxwell field and we will see how the worldline description can be re-
lated to standard perturbation theory by computing a master formula
for the one-loop n-photon amplitude. In 2.3.3 and 2.3.4 we will review
the basics of the Bern-Kosower formalism, a string-inspired method
that is used to compute the full one-loop n-gluon amplitude and that
will have a crucial importance later in the manuscript. In 2.3.5 a similar
formalism, called Bern-Dunbar-Shimada formalism, is presented for
the computation of the full one-loop n-graviton amplitude.

2.3.1 Worldline Formulation of Effective Actions

Consider the simplest case of a real massive scalar field ϕ with a
self-interaction potential U(ϕ). The (Wick-rotated) action thus reads

S[ϕ] =
∫

ddx
(

1
2

∂µϕ∂µϕ +
m2

2
ϕ2 + U(ϕ)

)
. (2.3.1)
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According to standard quantum field theory (see, e.g., [72, 73]), the
one-loop effective action for this field theory can be written as5

Γ[ϕ] = −Tr log
[
−□+ m2 + U′′(ϕ)
−□+ m2

]
, (2.3.2)

where U′′(ϕ) = δ2U(ϕ)
δϕ2 and ϕ is the background field. Now we make

use of the Schwinger formula

−Tr log
(

A
B

)
=
∫ ∞

0

dT
T

Tr
(

e−AT − e−BT
)

, (2.3.3)

valid for positive definite operators A and B. In (2.3.2) the denominator
does not involve the self-interaction potential U(ϕ) and operates as
a regulator in the representation (2.3.3). Neglecting the irrelevant
ϕ-independent terms, and performing the functional trace in the D-
dimensional space of coordinates x, we express the one-loop effective
action as

Γ[ϕ] =
∫ ∞

0

dT
T

∫
dDx ⟨x| e−T(−□+m2+U′′(ϕ(x)))|x⟩, (2.3.4)

where we identify T as the Schwinger proper time. We can directly
compare the integrand above with the standard Feynman’s path in-
tegral representation for the transition amplitude in non-relativistic
quantum mechanics (e.g. see [74] for more details). This reads as

⟨x′′|e−i(t′′−t′)Ĥ |x′⟩ =
∫ x(t′′)=x′′

x(t′)=x′
Dx(t) ei

∫ t′′
t′ dtL, (2.3.5)

where Ĥ is the Hamiltonian operator for the system:

Ĥ = −∇
2

2m̃
+ Ṽ(x). (2.3.6)

Here m̃ is the mass of the particle and Ṽ(x) is a generic time-independent
potential. From (2.3.6) we can extract the expression for the Hamilto-
nian operator in the momentum space (p̂ = −i∇),

Ĥ =
p̂2

2m̃
+ Ṽ(x), (2.3.7)

and we compute the Lagrangian L that appears in the right hand side
of (2.3.5) simply as the Legendre transform of this Hamiltonian:

L =
m̃
2

ẋ2 − Ṽ(x). (2.3.8)

5 In quantum field theory it is common knowledge that one-loop effective actions can
generally be expressed in terms of the determinant of the kinetic operator. Using the
relation log(det) = Tr(log), we obtain the standard definition in (2.3.2).
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We interpret now the operator in (2.3.6) as the Hamiltonian for a
fictitious particle moving in D dimensions, where we identify:

□ = ∇2 Ṽ(x) = m2 + U′′(ϕ(x)), m̃ =
1
2

, i(t′′ − t′) = T.
(2.3.9)

Using the path-integral prescription in (2.3.5), we can immediately
write

⟨x| e−T(−□+m2+U′′(ϕ(x)))|x⟩ =
∫ x(T)=x

x(0)=x
Dx(t) e−

∫ T
0 dt( 1

4 ẋ2+m2+U′′(ϕ(x(τ)))),

(2.3.10)
where we have identified τ = it. Taking into account that∫

dDx
∫

x(0)=x(T)=x
Dx(τ) =

∫
x(0)=x(T)

Dx(τ), (2.3.11)

we obtain the following representation for the effective action

Γ[ϕ] =
∫ ∞

0

dT
T

e−Tm2
∫

x(0)=x(T)
Dx(τ) e−

∫ T
0 dτ( 1

4 ẋ2+U′′(ϕ(x(τ)))). (2.3.12)

We have shown a formal procedure to obtain a path integral represen-
tation of the one-loop effective action of a self-interacting scalar field
theory. The formulation in (2.3.12) is truly a worldline representation,
in the sense that the effective action is truly computed through a
particle path integral performed over spacetime trajectories described
by the coordinate x(τ). We have chosen a simple theory, i.e. a self-
interacting scalar field theory, to show the general procedure to obtain
the worldline representation of the effective action. However, in the
present manuscript we are mostly interested to the coupling with an
external gauge field, so a generalization of (2.3.12) is needed. This
is not a problem at all, as we can simply recur to quantum mechan-
ics to include the coupling of the massive scalars to a background
Maxwell field. In particular, the contribution of an external gauge field
is added by generalizing the standard derivative in (2.3.2) to the gauge
covariant derivative (e.g. see [73]), that is

∂µ −→ ∂µ − ieAµ. (2.3.13)

Here Aµ is the gauge field and e is the coupling constant. The field
theory kinetic operator now reads

− (∂− ieA)2 + m2, (2.3.14)

and the one-loop effective action is generalized to

Γ[A] = −Tr log
[
−(∂− ieA)2 + m2

−□+ m2

]
. (2.3.15)

Note that the self-interacting potential in the kinetic operator of (2.3.2)
has been neglected, as it won’t enter in the calculations in the remain-
der of the manuscript. Now we can follow the exact same procedure
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proposed for the self-interacting scalar theory. The fictitious Hamilto-
nian here translates to

H =
(p + eA)2

2m̃
+ m2. (2.3.16)

and, using the Feynman’s path integral representation for the transi-
tion amplitude, we end up with

Γ[A] =
∫ ∞

0

dT
T

e−Tm2
∫

x(0)=x(T)
Dx(τ) e−

∫ T
0 dτ( 1

4 ẋ2+ie ẋ·A(x(τ))). (2.3.17)

The expression describes the one-loop effective action of a scalar parti-
cle coupled to an external (abelian) gauge field, as already anticipated
earlier in (2.2.2). We can use this formula to describe the contribution
to the photon scattering due to a scalar loop. However, this is not our
final goal, as we will be interested in the scattering of gluons, i.e. we
need to introduce a external non-abelian gauge field inside the scalar
loop effective action. We can retrieve the procedure used in the abelian
case, with two major changes:

1. The trace now includes a global color trace.

2. The corresponding quantum mechanical Hamilton operators at
different times do not commute any more, so that the exponential
must be taken path-ordered. Note that this guarantees the gauge
invariance of Γ.

We have thus

Γ[Aa] = Tr
∫ ∞

0

dT
T

e−Tm2
∫

x(0)=x(T)
Dx(τ)P e−

∫ T
0 dτ( 1

4 ẋ2+ie ẋ·A(x(τ))),

(2.3.18)

where now Aµ = Aa
µTa, P denotes the path ordering operator, and

Tr the color trace. The effective action in (2.3.18) is enough for the
calculations that will be presented later in the manuscript. However, it
is worth mentioning that the worldline description of effective actions
goes beyond scalar theories: in literature one can find various represen-
tations for the worldline path integral of spin- 1

2 [59–63] and spin-1 [64]
particles, i.e. we can introduce the spinor and gluon loop contributions
inside the effective action. More details will be mentioned in section
2.3.3 where the Bern-Kosower formalism for the one-loop n-gluon full
amplitude will be introduced.

2.3.2 Perturbative Calculations from Effective Actions

At the end of section 2.2, we have shown that the path integral
(2.2.2), re-derived in (2.3.17), can be expanded around the background
Maxwell field Aµ(x) to generate an amplitude in perturbation theory.
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In particular, we have seen that, by rewriting the external field as a
sum of plane waves

Aµ(x) =
n

∑
i=1

ε iµ eiki ·x, (2.3.19)

we obtain the path integral in (2.2.6), that describes the scalar-loop
n-photon amplitude in a first-quantized shape. Our next goal is to
demonstrate how the path integral can be solved to obtain a more
practical formula in terms of parameter integrals only. As we have
already mentioned, the path integral written in form (2.2.6) is Gaussian:
it can be evaluated through Wick contraction of the expression〈

ẋµ1
1 eik1·x1 · · · ẋµn

n eikn·xn

〉
. (2.3.20)

The Green’s function to be used to solve the Wick contractions is
now simply the one for the second-derivative operator, that acts on
periodic functions. To derive this Green’s function, we first observe
that

∫
Dx(τ) contains the constant functions: we must get rid of it to

obtain a well-defined inverse. Let us therefore introduce the center of
mass position xµ

0 of the loop,

xµ
0 =

1
T

∫ T

0
dτ xµ(τ), (2.3.21)

and restrict our integral over the space of all loops by fixing a specific
center of mass. This corresponds to redefine the spacetime coordinate
xµ(τ) = xµ

0 + yµ(τ) 6 with the condition
∫ T

0 yµ(τ) = 0, which allows
to invert the kinetic operator. In scattering amplitude calculations, the
D-dimensional integral over x0 just gives momentum conservation
(2π)Dδ(∑ ki). The reduced path integral

∫
Dy(τ) has an invertible

kinetic operator

2⟨τi|
(

d
dτ

)−2

|τj⟩ = G(τi, τj), (2.3.22)

where the worldline Green’s function G(τi, τj), up to an irrelevant
constant, is given by (see [37])

G(τi, τj) = |τi − τj| −
(τi − τj)

2

T
. (2.3.23)

Note that the choice of the zero mode as center of mass leaves the
worldline Poincaré invariance unbroken, i.e. G(τi, τj) = G(τi − τj). For
the executions of the Wick contractions, it is convenient to formally
re-exponentiate all the n photon vertex operators, and write the ẋi’s
included in (2.2.5) as

ε i · ẋieiki ·xi = eεi ·ẋi+iki ·xi |lin(εi). (2.3.24)

6 Note that this is a linear transformation, so no Jacobi determinant has to be included
in the path integral.
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Fig. 2.8: Sum of one-loop diagrams with permuted legs.

Now we just have to complete the square and we arrive at the following
closed expression for the one-loop n-photon amplitude in scalar QED:

Γ(k1, ε1; . . . ; kn, εn) = (−ie)n(2π)Dδ
(
∑ ki

) ∫ ∞

0

dT
T
(4πT)−

D
2 e−m2T

n

∏
i=1

∫ T

0
dτi exp

{ n

∑
i,j=1

(1
2

Gijki · k j − iĠijε i · k j +
1
2

G̈ijε i · ε j

)}∣∣∣
ε1 ...εn

.

(2.3.25)

Note that, besides the Green’s function Gij ≡ G(τi, τj), also its first
and second derivative appear:

Ġ(τi, τj) = sgn(τi − τj)− 2
(τi − τj)

T
(2.3.26)

G̈(τi, τj) = 2δ(τi − τj)−
2
T

. (2.3.27)

In our notation, the derivative is always applied on the first variable
of the Green’s function, such that

Ġ(τi, τj) ≡
∂

∂τi
G(τi, τj), G̈(τi, τj) ≡

∂2

∂τ2
i

G(τi, τj). (2.3.28)

For a given n, the notation |ε1...εn implies that we have to expand the
exponential in (2.3.25) keeping only the terms linear in each of the
polarization vectors ε1, . . . , εn. The factor (4πT)−D/2 represents the
free Gaussian path integral determinant factor:∫

Dy(τ) e−
∫ T

0 dτ 1
4 ẏ2

= (4πT)−D/2. (2.3.29)

It can be easily calculated starting again from quantum mechanics
results and performing the same formal substitutions of (2.3.9) —e.g.
see [71].

At this stage, it is important to stress the significance of (2.3.25):
we have at hand here a single unifying generating functional for the
one-loop n-photon amplitude, that already contains the contribution
from all possible disposition of the n photons. This is not true in
second-quantized QED, where the contribution from each diagram
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(that is, order and interaction within vertices) is calculated separately.
However, we still can establish a link between the parameter integrals
in (2.3.25) and the integrals appearing in an ordinary Feynman pa-
rameter calculation of this amplitude. Note that in the formula every
photon leg is integrated around the loop independently, so, once we
restrict the integration domain to a fixed ordering τi1 > τi2 > . . . > τin ,
it is not difficult to identify the integrand with the corresponding
Feynman parameter integral —see figure 2.8. In particular, there is an
exact correspondence between the δ-function appearing in G̈, and the
seagull–vertex of scalar QED.

Another important property of (2.3.25), already pointed out in its
original representation (2.2.2), is that it valid off-shell. This opens
for a wide range of possible calculations: for example, we can use
this formula to sew together a pair of legs and obtain a parameter
integral representing the complete two-loop (n− 2)-photon amplitude.
This is interesting, as we have at hand a single integral formula that
describes the sum of many diagrams of different topologies. On our
side, we will exploit the off-shellness of similar formulae later in the
manuscript to carry out calculations on specific amplitudes.

2.3.3 The One-Loop n-Gluon Amplitude

In the previous section we have found out how the worldline descrip-
tion of the effective action can be exploited to obtain a master formula
for the scalar-loop n-photon amplitude. Now we extend our analysis
to a perturbative description of the interaction with an external non-
abelian gauge field, i.e. we want to treat scattering of gluons. Before
proceeding with out analysis, it is worth mentioning the additional
difficulties that have to be taken into account in dealing with gluon
scattering. Firstly, the Lie-algebra of the generators of the gauge group
(we will introduce our conventions in section 3.1) imposes carefulness
in the derivation of a worldline formula for the effective action for
scalar particles: we have already seen in (2.3.18) that this can be han-
dled correctly with the introduction of a global color trace and of a
path-ordering operator for the correct application of the Feynman’s
path integral formulation. Moreover, non-abelian gauge theories allow
for self-interactions among gluons: three- and four-gluon vertices have
to be considered in our study, as they will give rise to one-particle
reducible contributions inside the scattering amplitude, i.e. diagrams
that can be divided into two subdiagrams by cutting a gluon line. In
our analysis so far, we have treated the external fields as background
fields coupled to a particle running into a loop. In particular, a kinetic
term for the external fields is not present in (2.3.18), so new techniques
for the description of their dynamics have to be introduced. This diffi-
culty has been efficiently treated within the so-called Bern-Kosower
formalism, a method developed during the 90s and obtained by the
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authors directly from the low energy limit of specific string ampli-
tudes. The central object in the Bern-Kosower (BK) formalism is the
color-ordered one-loop n-gluon correlator with a massive scalar loop.
The One-Particle Irreducible (1PI) of the amplitude is encoded in the
following master formula,

Γ(k1, ε1; . . . ; kn, εn) = (−ig)nTr(Ta1 · · · Tan)
∫ ∞

0

dT

(4πT)
D
2

e−m2T
∫ T

0
dτ1

· · ·
∫ τn−2

0
dτn−1 exp

{ n

∑
i,j=1

(1
2

Gijki · k j − iĠijε i · k j +
1
2

G̈ijε i · ε j

)}∣∣∣
ε1 ...εn

,

(2.3.30)

meaning that the associated diagrams cannot be divided into two self-
standing contributions by cutting an internal line. In the formula above
Gij, Ġij and G̈ij have the forms specified in (2.3.23) and (2.3.26)-(2.3.27)
respectively. Note the presence of the term Tr(Ta1 · · · Tan), typical of
a color-ordered amplitude. Again, the notation |ε1...εn implies that we
have to expand the exponential in (2.3.30) keeping only the terms
linear in each polarization. The resulting integrand is of the form

exp
{
·
}
|ε1...εn ≡ (−i)nPn

(
Ġij, G̈ij

)
e

1
2 ∑n

i,j=1
1
2 Gijki ·k j , (2.3.31)

where Pn is a polynomial dependent on the derivatives of the Green’s
function Ġij and G̈ij as well as on kinematic variables (ε′s and k’s).

According to the Bern-Kosower formalism, the reducible contribu-
tions are constructed using the following pinching procedure:

1. Expand the kinematic expression, and perform integrations by
parts, till all double derivatives G̈ij are removed (ignore bound-
ary terms). This step leads to the replacement Pn

(
Ġij, G̈ij

)
→

Qn
(
Ġij
)
. The integration by parts is carried out using the symmet-

ric partial integration algorithm that will be described in section
2.3.4.

2. Draw all possible one-loop diagrams Di with cubic vertices7 and
with n legs, labeled 1, . . . , n and following the ordering of the
color trace.

3. The pinching rule amounts to the replacement

Ġij −→
2
sij

=
2

(ki + k j)2 , (2.3.32)

removing the vertex and transferring the label i to the ingoing
leg (see figure 2.9). The integration over τj is omitted and the
index j replaced by i in the remaining Gkl and Ġkl .

7 The contribution of the quartic self-interactions among the gluons is automatically
included within the pinching procedure.
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j
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si

i · · · loop

Fig. 2.9: Pinching of a vertex according to the Bern-Kosower rules.

4. The previous replacement can only occur iff Qn contains Ġij
linearly. This is a trivial consequence of the replacement j→ i in
the previous step and of the antisymmetry of the Ġij function.
Moreover, a diagram will contribute iff each vertex except the
ones attached directly to the loop corresponds to a possible pinch,
i.e. it must be coherent with the color-ordering of the amplitude.
If more than two legs are attached to the same external tree in a
given diagram, the pinching procedure starts with the outermost
vertices and recursively removes the trees attached to the loop.

The pinching procedure can be improved with the introduction of a
suitable pinch operator, that will be presented later in the manuscript,
and the implementation of the perturbiner multi-particle techniques
that help to have a better understanding of the mathematical structure
of the trees attached to the loop.

As a further benefit of the Bern-Kosower formalism, the contribu-
tions of the spinor and gluon loop to the n-gluon amplitudes can be
constructed at the integrand level using a set of loop replacement rules
—see [35, 37, 75] for more details.

2.3.4 Symmetric Partial Integration

In this section we explain a partial integration algorithm that allows
one to remove all the double derivatives G̈ij contained in the numera-
tor polynomial Pn in (2.3.31) of the n-gluon color ordered amplitude.
The algorithm is known as symmetric partial integration algorithm,
as it solves for the double derivatives in Pn in such a way that the
permutation symmetry in the n gluons is preserved. This property
plays a crucial role, as it will be demonstrated in future sections of the
manuscript.

The symmetric partial integration algorithm can be defined in the
following way:

1. In every step, we partially integrate away all the G̈ij’s appearing
in the terms under inspection simultaneously. This is possible
since different G̈ij’s do not share variables, since, as it is evident
from (2.3.30), G̈ijis hooked to ε i · ε j which ought to appear only
once, and this property is preserved by all partial integrations.
New G̈ij’s may be created in this step.
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2. In the first step, for every G̈ij we partially integrate both over
τi and τj, and we take the average of the two results. Note that
boundary terms are ignored in this algorithm, we systematically
trash them away.

3. At every following step, clearly any G̈ij appearing must have
been created in the previous step. Therefore either both i and
j were used in the previous step, or just one of them. If both,
the rule is to again use both variables in the actual step for
partial integration, and take the average of the results. If only
one variable was used in the previous step, then the other one
should be used in the actual step.

example : We consider the n = 4 one-loop gluon scattering and
we look at the term G̈12G̈34 appearing in the polynomial P4, obtained
after the multilinear expansion of the exponential in (2.3.30) has been
performed. We can solve for both the double derivatives following the
procedure depicted above. In the first step we get

G̈12G̈34 →
1
4

Ġ12Ġ34

[(
Ġ1ik1 · ki − Ġ2ik2 · ki

) (
Ġ3jk3 · k j − Ġ4jk4 · k j

)
− G̈13k1 · k3 + G̈14k1 · k4 + G̈23k2 · k3 − G̈24k2 · k4

]
. (2.3.33)

In the second line we have obtained terms that still show double
derivatives, so we apply the algorithm a second time. Considering
just the first double derivative G̈13 (the other terms can be treated in
an identical way), we apply partial integrations over both variables τ1

and τ3, as both were involved in the previous step. We obtain:

− Ġ12Ġ34G̈13 →
1
2

Ġ12Ġ34Ġ13
(
Ġ1ik1 · ki − Ġ3ik3 · ki

)
+

1
2

Ġ13
(
G̈12Ġ34 − Ġ12G̈34

)
. (2.3.34)

Again double derivatives appear. We consider only the term involving
G̈12 in the second line. This time, only the variable τ1 has been used in
the previous step, therefore only τ2 has to be involved now. As final
result, we get:

Ġ13G̈12Ġ34 → Ġ13Ġ12Ġ34Ġ2ik2 · ki . (2.3.35)

All the variables involved in the algorithm are treated on the same
footing, so the final result has to be permutation-symmetric. The non-
trivial fact is that the process terminates after a finite number of steps,
and does not become cyclic. This is not difficult to derive: first of all
note that partial integration is not always symmetric —if this was
the case, in (2.3.35) the process would have become cyclic. Also, we
point out that, inside the generic Pn, the indices appearing in the G̈ij’s
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and the first indices of the Ġij’s are associated to the polarization
vectors, and thus must all take different values. In other words, it is
not possible to have terms of type G̈12Ġ12, that would become cyclic
inside the algorithm.

The symmetric partial integration described above is applied to poly-
nomials Pn

(
Ġij, G̈ij

)
and transforms them into polynomials Qn

(
Ġij
)
,

that do not depend on double derivatives of the Green’s function.
Because of the special structure of the symmetric partial integration
algorithm, the polynomials Qn show two important properties:

• Unlike Pn, they are homogeneous not only in the polarizations,
but also in the momenta.

• They are manifestly permutation invariant under to switch of
any leg.

These properties allow one to rewrite the polynomials Qn in a compact
way via a decomposition into cycles and tails. A cycle of length k is
defined by

Ġ(i1, i2, · · · , ik) ≡ Ġi1i2 Ġi2i3 · · · Ġiki1 Zk(i1, i2, . . . , ik), (2.3.36)

where

Zk(i1, i2, . . . , ik) ≡
(1

2

)δk2
Tr( fi1 · · · fik). (2.3.37)

Here f µν
i = kµ

i εν
i − ε

µ
i kν

i is the (abelian part of the) gluon field strength
tensor. The tails are the left-overs after factorizing out all possible
cycles. The k-tail T(i1, i2, . . . , ik) involves k polarization vectors that
have not yet been absorbed into field strength tensors.

For example, the cycle decomposition of Q3 reads as

Q3 = Q3
3 + Q2

3, (2.3.38)

where

Q3
3 = Ġ(1, 2, 3), Q2

3 = Ġ(1, 2)T(3) + perms. (2.3.39)

The superscripts on the left-hand side of the equations above indicate
the cycle-content of each term.

Similarly, we show the cyclic decomposition of Q4:

Q4 = Q4
4 + Q3

4 + Q2
4 + Q22

4 , (2.3.40)
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where

Q4
4 =Ġ(1, 2, 3, 4) + Ġ(1, 2, 4, 3) + Ġ(1, 3, 2, 4)

Q3
4 =Ġ(1, 2, 3)T(4) + Ġ(2, 3, 4)T(1)

+ Ġ(3, 4, 1)T(2) + Ġ(4, 1, 2)T(3)

Q2
4 =Ġ(1, 2)T(3, 4) + Ġ(1, 3)T(2, 4) + Ġ(1, 4)T(2, 3)

+ Ġ(2, 3)T(1, 4) + Ġ(2, 4)T(1, 3) + Ġ(3, 4)T(1, 2)

Q22
4 =Ġ(1, 2)Ġ(3, 4) + Ġ(1, 3)Ġ(2, 4) + Ġ(1, 4)Ġ(2, 3).

(2.3.41)

In (2.3.39)-(2.3.41) the one- and two-tails appear,

T(a) ≡∑
r

Ġarεa · kr (2.3.42)

T(a, b) ≡ ∑
r,s

(r,s) ̸=(b,a)

Ġarεa · krĠsεb · ks

+
1
2

Ġabεa · εb

[
∑
r ̸=b

Ġarka · kr −∑
s ̸=a

Ġskb · ks

]
. (2.3.43)

Note that the cycle decomposition of Qn involves the tails of length up
to n− 2. Up to length 4, the tails are given in [37], while the five-tail is
computed in [76]. In principle, one is able to compute tails at any order
simply by applying iteratively the algorithm showed in the current
section.

2.3.5 The One-Loop n-Graviton Amplitude

The gluon master formula (2.3.30) was generalized to amplitudes with
gravitons by Bern, Dunbar and Shimada [57] and later refined by
Dunbar and Norridge [58]. Using again string theory as a guiding
principle, we focus on closed strings to extract the particle limit and
study graviton scattering. The master formula for the irreducible one-
loop n-graviton amplitudes with a massless scalar loop is constructed
as

Γ (k1, h1; · · · ) = −(−κ

4
)n
∫ ∞

0

dT
T
(4πT)−

D
2

∫ T

0
dτ1 · · ·

∫ T

0
dτn

× exp

{
n

∑
i,j=1

[
1
2

Gijki · k j − i(Ġijε i +
˙̄Gij ε̄ i) · k j

+
1
2

G̈ijε i · ε j +
1
2

¨̄Gij ε̄ i · ε̄ j +
1
2

Hij(ε i · ε̄ j + ε j · ε̄ i)

]}∣∣∣
ε1 ...ε̄1 ...

,

(2.3.44)

where the on-shell conditions allow to reconstruct the graviton po-
larization tensor as ϵµν = ε

µ
i ε̄ν

i . The equation above differs from the
Bern-Kosower master formula in (2.3.25) as we are incorporating
both the left-moving variables τi and the right-moving variables τ̄i.
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This originates from the closed string periodicity, that allows the
string worldsheet variables to be separated into left-moving and right-
moving components. The function Gij = G(τi, τj) is the worldline
Green’s function introduced in (2.3.23), Ġij and G̈ij are derivatives of
this worldline Green’s function with respect to left-moving variables τi,
and ˙̄Gij and ¨̄Gij are derivatives with respect to right-movers τ̄i —their
expressions both match with (2.3.26)-(2.3.27). The term Hij = H(τi, τj)

is the derivative of Gij with respect to one left-mover and one right-
mover variable, and its value inside the parameter integrals is given
by the constant value

Hij =
2
T

. (2.3.45)

In (2.3.44) the terms involving Hij, which were not present in the
Bern-Kosower formula, are now included as they reflect the coupling
of the left- and right-movers through the zero mode of the string.
Once we extract the particle limit α′ → 0 to compute the master
formula (2.3.44), the left- and right-moving variables τi and τ̄i are no
longer independent. In detail, we can identify τi = τ̄i, and only one
integration variable is needed in (2.3.44).

The full amplitude is obtained by identifying the multi-linear terms
in ε i and ε̄ i from the exponential expansion in (2.3.44). The symmetric
Integration By Parts (IBP) algorithm is used to eliminate all double
derivatives G̈ij and ¨̄Gij, and the pinching rules can then be applied to
the resulting integrand in order to construct the reducible contribu-
tions to the amplitude. However, differently from the gluon case, it is
now generally not possible to remove all of the G̈ij, ¨̄Gij using partial
integrations in the single variables τi. Instead, one has to return to
the string level and invoke the fact that, before taking the infinite
string tension limit, the left-and right movers depend on independent
variables τi and τ̄i. This allows one to treat Ġij, G̈ij and ˙̄Gij, ¨̄Gij indepen-
dently in the partial integration procedure. Additionally, the following
rules must be used in the computation of derivatives,

∂

∂τ̄k
Ġij =

1
2
(δki Hij − δkjHij) (2.3.46)

∂

∂τk

˙̄Gij =
1
2
(δki Hij − δkjHij) (2.3.47)

∂

∂τ̄k
G̈ij = 0 (2.3.48)

∂

∂τk

¨̄Gij = 0. (2.3.49)

Essentially, the symmetric partial integration rules introduced in sec-
tion 2.3.4 can be extended in graviton amplitudes calculations simply
by treating the variables τi and τ̄i, entering in Ġij and ˙̄Gij respectively,
on an independent footing. The addition of the derivative rules in
(2.3.46) generates extra terms involving Hij, that are treated as con-
stants in the partial integration procedure. The integrand can thus
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be ordered according to the powers of Hij, where the terms in the
prefactor polynomial not containing any Hij can be factorized into
Qn(Ġ)Qn( ˙̄G) and terms with m factors of Hij appear with (n − m)

factors of Ġ and ˙̄G each.
After the removal of all of the G̈ij, ¨̄Gij using the symmetric partial

integration procedure, the computation of the reducible contributions
of the graviton amplitude can be achieved by a pinching procedure
that mimics the one for the gluon case introduced in section 2.3.3.
The most important difference lies in the fact that the pinching of a
vertex with labels i and j now is possible iff the integrand contains
both Ġij and ˙̄Gij linearly. In addition, the replacement in (2.3.32) has
to be modified to

Ġij
˙̄Gij →

4
sij

. (2.3.50)

After the recursive removal of all trees attached to the loop, one obtains
a parameter integral representation for the full on-shell n-graviton
amplitude with a massive scalar loop. Representations for other spins
in the loop (Weyl fermion, vector, gravitino, graviton) can again be ob-
tained from this by precise loop replacement rules that are essentially
independent applications of the rules mentioned at the end of section
2.3.3 to the left- and right-mover parts, with additional substitutions
rules for the cross terms involving Hij —see [57, 58] for more details.

In conclusion of this section, it’s worth mentioning that the calcu-
lations presented in this thesis will not aim to build the full n-graviton
amplitude through the Bern-Dunbar-Shimada (BDS) formalism. In
chapter 8, we will focus on the part of the integrand in (2.3.44) that is
independent on Hij. In this case, the expansion of the exponent leads
to a prefactor polynomial that simply factorizes into two copies of the
one of the gluonic case in (2.3.31),

exp
{
·
}∣∣∣

ε1 ...εn ε̄1 ...ε̄n
= Pn( ˙̄Gij, ¨̄Gij)Pn(Ġij, G̈ij)e

1
2 ∑n

i,j=1 Gijki ·k j . (2.3.51)

One of the main goals of the thesis is the study of the algebraic
structure of the gravitational trees attached to the loop, and, in this
sense, (2.3.51) will be enough. However, as we emphasized above, the
contributions that come from the Hij terms cannot be neglected if one
aims to compute the full one-loop amplitude.

2.4 propagators from the worldline

This section will examine the basic concepts of dressed propagators
in worldline representation. Following the guiding principles seen
in section 2.3, in 2.4.1 we will briefly re-derive worldline represen-
tations for a scalar propagator dressed with a set of different exter-
nal fields. In particular, we will focus our attention on the coupling
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with background Maxwell fields and, in 2.4.2, we will compute a
Bern-Kosower-like formula for the n-photon scalar propagator. The
procedure will follow the step used for one-loop calculations, but
substantial differences will be pointed out.

2.4.1 Worldline Formulation of Propagators

Previously, in section 2.3.1 we have seen how one-loop effective actions
can be reformulated in the worldline language by means of standard
quantum field theory techniques: using the Schwinger proper-time
representation, one obtains an integral over the space of all closed
trajectories of a quantum mechanical particle moving in spacetime.
Generally, this procedure can be extended from closed loop path
integrals to path integrals on open lines, representing the field the-
ory propagators of specific particles in a background field. The path
integral description of propagators involves the same worldline La-
grangian as the one-loop case, with some boundary terms added if
necessary. The path integral is to be performed over the space of tra-
jectories connecting two fixed points in spacetime, with appropriate
boundary conditions. As a first example, we consider the path integral
representation of the scalar propagator. The starting point is the stan-
dard definition of the propagator as the inverse of the kinetic operator
(e.g. see [73]):〈

ϕ(x′)ϕ̄(x)
〉

= ⟨x′| 1
−□+ m2 + U′′(ϕ)

|x⟩

=
∫ ∞

0

dT
T
⟨x′| e−T(−□+m2+U′′(ϕ))|x⟩, (2.4.1)

Here we have included inside the kinetic operator the contribution
U′′(ϕ), that takes origin from the self-interacting potential U(ϕ) and
that depends on the background field ϕ. Note that in the second line
of (2.4.1) we have made use of the Schwinger parametrization

1
A

=
∫ ∞

0
dT e−TA. (2.4.2)

Here the procedure follows step by step the method in (2.3.5)-(2.3.9)
and we easily end up with the following representation for the scalar
propagator:〈

ϕ(x′)ϕ̄(x)
〉

=
∫ ∞

0
dT e−Tm2

∫ x(T)=x′

x(0)=x
Dx(τ) e−

∫ T
0 dτ( 1

4 ẋ2+U′′(ϕ(x(τ)))).

(2.4.3)

Similarly to the one-loop representation, we can compute the propaga-
tor for a massive scalar coupled to a background Maxwell field. The
kinetic operator is given by (2.3.14) and the propagator is given by〈

ϕ(x′)ϕ̄(x)
〉

A
= ⟨x′| 1

− (∂− ieA)2 + m2
|x⟩, (2.4.4)
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that transforms to8〈
ϕ(x′)ϕ̄(x)

〉
A
=
∫ ∞

0
dT e−Tm2

∫ x(T)=x′

x(0)=x
Dx(τ) e−

∫ T
0 dτ( 1

4 ẋ2+ie ẋ·A(x(τ))).

(2.4.5)

Again, we can in principle extend this result to non-abelian gauge
theories and describe a scalar propagator dressed with external gluons.
Here the generalization is not as immediate as (2.3.18), because of
the color degrees of the external scalar that have to be taken into
account and because of the realization of the path ordering on the
line. In literature, various solutions have been proposed that include
the presence of auxiliary Grassmann variables that, once quantized,
allow to efficiently describe the path ordering and the color of the
external particles [77–79]. We won’t give further details about this, as
it won’t be relevant for the results that will be presented later in the
manuscript.

2.4.2 Perturbative Calculations from Propagators

Following the guiding principles of section 2.3.2, we can complete
perturbative calculations on the line by expanding the exponential
in (2.4.5). In particular, the n-photon scalar propagator, i.e. the scalar
propagator with the insertion of n photons, can be obtained using
analogous recipes to the one-loop case. Firstly, we write the external
field as a sum of n plane waves

Aµ(x) =
n

∑
i=1

ε iµ eiki ·x, (2.4.6)

then extract from (2.4.5) the multi-linear part in the various polariza-
tions ε l . This is a representation of the propagator in x-space, but it
can be Fourier transformed on the two external scalar lines in order to
get a result more familiar in standard QFT. This leads to

D(n)(p, p′; ε1, k1; . . . ; εn, kn) = (−ie)n
∫ ∞

0
dTe−m2T

∫
d4x

∫
d4x′

× ei(p·x+p′·x′)
∫ x(T)=x′

x(0)=x
Dx e−

∫ T
0 dτ 1

4 ẋ2
n

∏
l=1

∫ T

0
dτl ε l · ẋ(τl)eikl ·x(τl).

(2.4.7)

It is thus convenient to split the particle path in terms of a back-
ground x̄µ(τ) = xµ + (x′µ − xµ) τ

T , that satisfies the boundary condi-
tions x̄µ(0) = x and x̄µ(T) = x′, and fluctuations yµ(τ) with vanishing
boundary conditions:

xµ(τ) = xµ + (x′µ − xµ) τ
T + yµ(τ). (2.4.8)

8 This result corresponds exactly to the first Feynman proposal in (2.2.1) once the
proper time s has been rescaled and Wick rotated, s→ −i2T.
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One thus gets

D(n)(p, p′; ε1, k1, . . . , εn, kn) = (−ie)n
∫ ∞

0
dTe−m2T

∫
d4x

∫
d4x′

× ei(p·x+p′·x′)− 1
4T (x−x′)2+∑l

(
ikl ·x+

ε l
T ·(x′−x)

) ∫ y(T)=0

y(0)=0
Dy e−

∫ T
0 dτ 1

4 ẏ2

×
n

∏
l=1

∫ T

0
dτl eikl ·

(
(x′−x)

τl
T +y(τl)

)
+ε l ·ẏ(τl)

∣∣∣
ε1...εn

, (2.4.9)

where again |ε1 ...εn indicates that we are only meant to pick out the
multilinear part in all the polarizations. The latter path integral thus
provides the correlation function of the product of n photon vertex
operators. This, with our choice of coordinates, takes now the form

VA[k, ε] = eik·x+ ε
T ·(x′−x)

∫ T

0
dτ eik·

(
(x−x′) τ

T +y(τ)
)
+ε·ẏ(τ)

∣∣∣∣∣
lin

, (2.4.10)

with respect to the Gaussian measure
∫
Dy(τ) e−

∫ T
0 dτ 1

4 ẏ2
, which has

normalization (4πT)−D/2 —compare with (2.3.29). This yields the
Green’s functions

− 1
2
〈
yµ(τ)yν(τ′)

〉
= δµν∆(τ, τ′) , (2.4.11)

∆(τ, τ′) =
ττ′

T
+

1
2
|τ − τ′| − 1

2
(τ + τ′) . (2.4.12)

Note the difference in the definition of ∆(τ, τ′) with respect to the
Green’s function G(τ, τ′) defined in (2.3.23) for the one-loop case:
because of the different configuration of the worldline, line and loop
respectively, and accordingly the different boundary conditions, the
kinetic operator has a different Green’s function in the two cases.
Going back to the integral in (2.4.9), after some straightforward algebra
one finds the Bern-Kosower-like9 master formula originally obtained
by Daikouji et al. [80] and later in the worldline formalism in [81], i.e.

D(n)(p, p′; ε1, k1, . . . , εn, kn) = (−ie)n
∫ ∞

0
dTe−T(m2+p′2)

n

∏
l=1

∫ T

0
dτl

× e(p′−p)·∑n
l=1(−klτl+iε l)+∑n

l,l′=1

(
kl ·kl′∆l−l′−2iε l ·kl′ ∆̇l−l′+ε l ·ε l′ ∆̈l−l′

)∣∣∣
ε1...εn

.

(2.4.13)

Here

∆l−l′ :=
1
2
|τl − τl′ | , (2.4.14)

is the translation-invariant part of (2.4.12). Above we have also stripped
off the overall momentum-conservation delta function. In particular,

9 Compare with the one-loop formula in (2.3.25).
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note that Fourier transforming x, x′ into p, p′, i.e. writing D(n) in full
momentum space, removes the (UV divergent) factor (4πT)D/2. The
Feynman amplitude for the tree-level scattering of two scalars and n
photons can thus be obtained from (2.4.13) by truncating the external
scalar lines, i.e. multiplying by (p2 + m2)(p′2 + m2),

D(n)(p, p′; ε1, k1; . . . ; εn, kn)

= (p2 + m2)(p′2 + m2)D(n)(p, p′; ε1, k1; . . . ; εn, kn). (2.4.15)

Note that, as already mentioned about one-loop calculations, this
expression holds off the mass-shell of the external particles. This
property, peculiar of the worldline formalism, is extremely relevant
and will be properly investigated later in the manuscript. Moreover,
going on-shell leads to transversality in all the photon lines, i.e. the
amplitude is guaranteed to vanish upon the replacement ε l(kl) → kl
as expected. This will also be reviewed later.





3
C O L O R - K I N E M AT I C S D UA L I T Y A N D D O U B L E C O P Y

The present chapter reviews the basics of the color-kinematics duality
and double copy as recent and significant developments in scattering
amplitudes. The color-kinematics duality states that the kinematic fac-
tors of an amplitude in gauge theory can be given in a representation
such that they satisfy the very same algebraic relations of the corre-
sponding color factors. The double copy principle, on the other hand,
states that the scattering amplitudes of a gauge theory can be related to
those of a gravity theory through a simple transformation of the color
factors into another copy of the kinematic factors. The double copy
prescription requires color-kinematics duality to be satisfied satisfied.
In this chapter we firstly review the algebraic tools for dealing with
the color structure of Yang-Mills theory, then we rederive relations
among partial amplitudes (Kleiss-Kuijf and BCJ) that naturally lead to
color-kinematics duality. We later introduce the main ideas behind the
double copy prescription. We conclude the chapter with final remarks
about the related KLT relations.

3.1 the color-structure of yang-mills theory

The simplest example of theory exhibiting color-kinematics duality
is Yang-Mills theory, a special example of gauge theory with a non-
abelian symmetry group. Yang-Mills Lagrangian describes the propa-
gation and self-interactions of gluons through the Lagrangian

LYM = −1
4

Tr FµνFµν, (3.1.1)

with Fµν = ∂µ Aν − ∂ν Aµ − ig√
2

[
Aµ, Aν

]
and Aµ = Aa

µTa. For definite-
ness, we consider the semisimple gauge group G = SU(N); the gluon
fields are in the adjoint representation, so the color indices run over
a, b, . . . = 1, 2, . . . , N2 − 1. The generators of the gauge group Ta are
chosen to be hermitian, and are normalized as

Tr (TaTb) = δab, (3.1.2)

and the totally antisymmetric group-theory structure constants f̃ abc

are defined through the relation[
Ta, Tb

]
= i f̃ abcTc. (3.1.3)

By combining the two relations above we express the color factor f̃ abc

as
i f̃ abc = Tr

([
Ta, Tb

]
Tc
)

. (3.1.4)

41
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Fig. 3.1: The structure constants in a four point amplitude due to the Feynman
rules for three point vertices in the gauge field. The resulting color factor is
identical to the one associated to a quartic vertex.

Once gauge redundancy is fixed1, the Lagrangian in (3.1.1) can be
used to extract standard Feynman rules. In the Feynman gauge, the
gluon propagator is given by δab ηµν

p2 , while the 3- and 4-gluon ver-

tices involve f̃ abc and f̃ abx f̃ xcd (+perms.), respectively, each dressed
up with kinematic factors (see figure 3.1). These rules are useful to
construct scattering amplitudes, where the different group theory
structures are dressed with a suitable factor depending on momenta
and polarizations.

In the remainder of the chapter, the discussion will be mainly fo-
cused on scattering amplitudes at tree-level. Most of the properties of
amplitudes that will be exploited in the following, can be efficiently
extended at loop-level and final remarks about this generalization will
be done later in this chapter.

The full color-dressed n-point tree amplitude of Yang-Mills theory
can be conveniently rewritten in terms of diagrams with only cubic
vertices (as described below), such as

, (3.1.5)

and the amplitude takes the form

Atree
n = gn−2 ∑

j∈ trivalent

cjnj

∏ij
sij

. (3.1.6)

The sum runs over the set of distinct n-point graphs (labeled by j)
with only three-point vertices. The factors 1/sij are ordinary scalar
Feynman propagators, where ij runs over the propagators for diagram
j. The numerators factorize into a group-theoretic color-part cj, which
is a polynomial of structure constants f abc, and a purely kinematic
part ni, which is a polynomial of Lorentz-invariant contractions of

1 We ignore ghosts, since the main focus here is on tree-level amplitudes.
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Fig. 3.2: The three diagrams with cubic vertices describing a four-point tree
amplitude.

polarization vectors ε i and momenta pi. The contribution of quartic
vertices in Yang-Mills theory to (3.1.6) certainly contains less propa-
gators and can be absorbed into the ni by multiplying and dividing
by appropriate propagators 1 = sij /sij for compatibility with the pole
structure.

As an example, we consider the 4-point amplitude for Yang-Mills
theory. The amplitude is given by the sum of the three cubic diagrams
in figure 3.2, and takes the form

Atree
4 =

csns

s
+

cunu

u
+

ctnt

t
. (3.1.7)

The color factors of the s-, t- and u-channel diagram are

cs ≡ f̃ a1a2x f̃ xa3a4 , ct ≡ f̃ a1a3x f̃ xa4a2 , cu ≡ f̃ a1a4x f̃ xa2a3 . (3.1.8)

The three color factors are not independent but they obey Jacobi
relations that are inherited from the Lie algebra structure. In particular,
the following relation holds:

cs + ct + cu = 0. (3.1.9)

So there are only two independent color-structures for the tree-level 4-
gluon amplitude. As pointed out above, the Yang-Mills 4-point contact
terms can be absorbed into s-, t- or u-channel 3-vertex pole diagrams
and only the three diagrams in figure 3.2 contribute to the full tree
amplitude. This is trivially achieved by multiplying the distinct 4-point
vertices by 1 = s/s = u/u = t/t. However, since cs + ct + cu = 0, there
is not a unique prescription for how to assign a given 4-point vertex
into the cubic diagrams, and, generalizing this procedure to a generic
n-point amplitude, it is manifest that the numerators in (3.1.6) are not
uniquely defined.

There are several ways in which one can deform the numerators
ni without changing the full amplitude. First of all, one can make use
of the gauge invariance of the amplitude and exploit the transversality
propriety. This property comes directly from Ward-Takahashi identities
in QFT, and states that if in the expression of the amplitude is in-
variant if one substitutes ε i(pi) → ε i(pi) + pi; this shift modifies the
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expression of the numerators ni, but gauge invariance guarantees that
the full amplitude is untouched.

A more non-trivial deformation involves a shift in the distinct nu-
merators ni of type (consider arbitrary functions ∆i)

ni = n′i + ∆i, (3.1.10)

subject to the constraint

∑
i

ci∆i

si
= 0. (3.1.11)

For example, in the four point case we can take the shifts ns → ns + s∆,
nt → nt + t∆ and nu → nu + u∆. The amplitude is left invariant, as
the net deformation is proportional to cs + ct + cu, that is vanishing
because of the color factor Jacobi identity (3.1.9).

In general, inside the full amplitude in (3.1.6), we can pinpoint sets of
three trivalent diagrams (see figure 3.3) whose color factors are related
through a Jacobi identity of type

ci + cj + ck = 0. (3.1.12)

The following transformation on the numerators leaves the amplitude
invariant:

ni → ni + si∆, nj → nj + st∆, nk → nk + sk∆, (3.1.13)

where 1/si, 1/sj and 1/sk are the unique propagators that are not
shared among the three diagrams, as shown in figure 3.3. The func-
tion ∆ can be thought of as generalized gauge functions, that produces
transformations over the numerator factors ni and that drop out of the
amplitude. In particular, the freedom (3.1.12)-(3.1.13) is often called
generalized gauge transformation [11]. The gauge choice can only
affect the numerators ni by adding terms that cancel one of the sij

poles2.

3.2 partial amplitudes and kleiss-kuijf relations

From the considerations in the previous section we have learned that
the single numerators ni are not unique nor separately gauge invari-
ant, but there is nothing wrong with this: the individual Feynman
diagrams are not physical observables, the relevant property is the
gauge invariance of the full amplitude. For practical purposes, it is
often useful to work with gauge invariant quantities. Note that, if we
are able to arrange the color factors in a basis that is independent
under Jacobi identities, the coefficient in front of every terms has to be
gauge invariant. These coefficients are referred to as partial amplitudes,

2 Note that the ambiguity in the decomposition of quartic-vertices into cubic diagrams
has the same effect of a generalized gauge transformation.
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si
sj

sk

Fig. 3.3: A triplet of diagrams where the sum over the associated color factors
vanishes due to the Jacobi relation.

that combine to construct the full amplitude and by construction are
fully gauge invariant.

We show now alternative ways to obtain such partial amplitudes
starting from the full amplitude (3.1.6). First of all we can use the
definitions (3.1.2)-(3.1.4) to reshuffle the contraction of two structure
constants as

f̃ abe f̃ ecd = −Tr
([

Ta, Tb
] [

Tc, Td
])

. (3.2.1)

By iterating identities like (3.1.4) and the one above, all the structure
constants f abc in the color factors of the amplitude can be replaced by
traces of generators Td. Hence, we can reformulate the full amplitude
in (3.1.6) as

Atree
n = gn−2 ∑

ρ∈Sn−1

Tr (Ta1 Taρ(2) . . . Taρ(n)) An (1, ρ(2, . . . , n)) , (3.2.2)

where Sn−1 denotes the group of permutations in (2, 3, . . . , n). The
partial amplitudes An (1, ρ(2, . . . , n)) in (3.2.2) are called color-ordered
amplitudes. The cyclic nature of the trace has been exploited to obtain
a trace-basis of (n− 1)! elements. The most important property of the
color-ordered amplitudes is that they must be separately gauge invari-
ant 3, as opposed to individual Feynman diagrams. In (3.2.2) we have
accomplished one of our goals, i.e. we have obtained a decomposition
of the full amplitude Atree

n into smaller gauge invariant pieces.
The color-ordered amplitudes have a number of properties worth

noting [83]:

1. Cyclic: As mentioned above, the cyclic symmetry of the color-
ordered amplitudes follows directly from the trace-structure

An (1, 2, . . . , n) = An (2, . . . , n, 1) = . . . (3.2.3)

2. Reflection:

An (1, 2, . . . , n) = (−1)n An (n, . . . , 2, 1) (3.2.4)

3 This follows from a partial orthogonality property of the single-traces [82].
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1 n

σ(2) σ(3) σ(n− 1)

· · ·

Fig. 3.4: Graphic representation of a diagram where the color factors have
been converted in the multi-peripheral form.

3. U(1) decoupling identity:

An (1, 2, . . . , n) + An (2, 1 . . . , n) + An (2, 3, 1 . . . , n)

+ . . . + An (2, 3, . . . , 1, n) = 0. (3.2.5)

This relation among n − 1 color-ordered amplitudes is also
known as photon decoupling identity. It is obtained by tak-
ing the generator Ta1 ∝ 1 in (3.2.2): after this substitution, the
particle behaves like a non-interacting fictitious photon and any
scattering amplitude involving it must be zero.

The existence of relations among partial amplitudes is not a coin-
cidence: the trace-basis (3.2.2) is overcomplete and this forces the
presence of relations of type (3.2.3)-(3.2.5).

To better understand why the trace-basis in (3.2.2) is not the min-
imal basis, we consider now a different procedure [84] to organize
the full amplitude in (3.1.6). The main idea is to iteratively use the
Jacobi identity to disentangle the color factors of individual Feynman
diagrams. In particular, we can make repeated use of the identity
(3.1.12) to convert each diagram into a sum of color factors in multi-
peripheral form, i.e. color factors where the position of two legs (1 and
n by convention) is fixed, and the remaining n− 2 legs are permuted
(see figure 3.4). As an example, we show how an external tree with
legs 2 and 3 attached extending from the baseline can be converted to
a linear combination of two diagrams in multi-peripheral form:

1 n

2 3
· · · −→ −

1 n

2 3
· · · −

1 n

2 3
· · · .

(3.2.6)
The procedure depicted above can be iterated unlimited times to
convert any trivalent diagram into a linear combination of diagrams
in multi-peripheral form, i.e. diagrams in same shape of figure 3.4.
The huge advantage of this representation is that the color factors
in multi-peripheral form are not related by any Jacobi identities, so
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there is a total of (n− 2)! independent color factors. We write the full
amplitude in the multi-peripheral basis as

Atree
n = ∑

σ∈Sn−2

f̃ a1aσ(2)b1 f̃ b1aσ(3)b2 · · · f̃ bn−3aσ(n−1)an Ãn (1, σ(2, . . . , n− 1), n) ,

(3.2.7)
where Sn−2 indicates the group of permutations in (2, 3, . . . , n− 1). As
the color structures are independent, the coefficient that comes with
each color factor must be a gauge invariant quantity.

Now we can compare the representation in the multi-peripheral basis
in (3.2.7) and the one in the trace basis in (3.2.2) obtained above. The
important thing to notice is that in the trace basis representation, there
are (n− 1)! distinct traces, while the independent color factors are
only (n− 2)!. This implies that the trace basis is overcomplete and the
color-ordered partial amplitudes have to satisfy special linear relations
among them. These linear relations are known as the Kleiss-Kuijf
relations [85], and are exactly the relations that reduce the number
of independent color ordered amplitudes from (n− 1)! to (n− 2)!.
An example of one of those relations has already been carried out in
(3.2.5). A compact representation of the Kleiss-Kuijf relations is given
by

An (1, α1, . . . , αs, n, β1, . . . , βr) = (−1)r ∑
σ∈α�βT

An (1, σ, n) , (3.2.8)

where {βT} denotes the reverse ordering of the labels {β} and �
denotes the sum ordered permutations, namely permutations of the
labels in the joined set {α} ∪ {βT} such that the ordering within {α}
and {βT} is preserved. The � operator is commonly referred to as the
shuffle product, and section 4.1 will provide a more comprehensive
explanation of it. The proof of (3.2.8) is carried out in [84] and based
on group-theoretic properties only such as the Jacobi identity and
the behavior of color traces. As pointed out above, the effect of the
relations (3.2.8) is to reduce the number of independent color-ordered
amplitudes that appear in (3.2.2): the (n− 2)! partial amplitudes Ãn

in the representation (3.2.7) are exactly the color-ordered partial am-
plitudes that are independent under the Kleiss-Kuijf relations. As a
final remark for the present section, note that the partial amplitudes
Ãn are not unique: the choice of legs 1 and n as reference legs has
been completely arbitrary and other legs could have been preferred.

3.3 duality between color and kinematics

In section 3.1 we have learned that the kinematic numerators ni in
the amplitude (3.1.6) are building blocks for colored amplitudes in
Yang-Mills theory. These numerators are not unique: they can be mod-
ified using suitable sets of transformations. The non-trivial statement
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ci cj

Fig. 3.5: Two trivalent diagrams obtained by twisting two lines. The corre-
sponding color factors ci and cj are linked by antisymmetry.

is that these transformations can be used to parametrize the numer-
ators ni in such a way that they obey the same algebraic relations as
the corresponding color factors ci, although they appear completely
unrelated at first glance. This property is known as color-kinematics
duality and was first proposed by Bern, Carrasco and Johansson (BCJ)
in 2008 [11].

More precisely, the main proposal of the duality is that one can
always find a representation of the numerators ni in (3.1.6) such that

ci + cj + ck = 0 ⇔ ni + nj + nk = 0 (3.3.1)

ci = −cj ⇔ ni = −nj. (3.3.2)

In (3.3.1), the labels i, j and k refer to three graphs which are identical
except for one internal propagator (see figure 3.3). The relation indi-
cates that the numerator factors must satisfy exactly the same Jacobi
relations as their associated color factors, i.e. there exists a represen-
tation for the numerators such that ni + nj + nk = 0. The identity in
(3.3.2) is referred to the switching of two lines on a three-point vertex
(see figure 3.5). The color factors are related by a minus sign4: ci = −cj,
so the color-kinematics duality indicates that there is a representation
where the numerator factors of the two diagrams share the same anti-
symmetry property: ni = −nj.

The entire set of identities that are obtained by exploiting the re-
lations (3.3.1)-(3.3.2) inside the full amplitude (3.1.6) is known as
Generalized Jacobi Identities (GJI) [86]. A consistent way to construct
it will be provided later in the manuscript by investigating the Lie
algebra generated by n colored particles.

3.4 bcj relations

The existence of the color-kinematics duality presented in (3.3.1)-(3.3.2)
has interesting consequences on the search for a minimal basis of color

4 This property comes out naturally from the definition of the group-theory structure

constants f̃ abc through a commutator, i.e.
[

Ta, Tb
]
= i f̃ abcTc.
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ordered field theory amplitudes showed in section 3.2. The represen-
tation of the full Yang-Mills amplitude in the multi-peripheral basis
(3.2.7) allowed to identify (n − 2)! independent partial amplitudes,
but this is not the end of the story: the color ladder of the partial
amplitudes can be further reduced to a basis of (n− 3)! by means of
the so-called BCJ relations , found by Bern, Carrasco and Johansson
in 2008 [11].

The identities among partial amplitudes emerging from the color
structure of the gauge group have been fully exploited to obtain the
multi-peripheral representation in (3.2.7), i.e. Jacobi identities can not
be used further to make progress in the computation of a minimal
basis for partial amplitudes. Thus, the only way we have to go beyond
the multi-peripheral representation and find new identities among
partial amplitudes is by means of a massive use of the generalized
Jacobi identities introduced in section 3.1. This is indeed the idea
behind the BCJ relations. Before introducing these relations in a closed
form, we briefly sketch how the scheme works in the four-point case.
Consider the expression of the full four-point amplitude in Yang-Mills:

Atree
4 =

csns

s
+

cunu

u
+

ctnt

t
. (3.4.1)

Now we decompose the expression above in terms of color-ordered am-
plitudes using the trace-basis representation in (3.2.2). Note that only
the three partial amplitudes A4(1, 2, 3, 4), A4(1, 3, 2, 4) and A4(1, 3, 4, 2)
are independent under reflection symmetry. They are parametrized by
kinematic numerators ns, nt and nu numerators along with the s−, t−
and u−channel poles. Only two out of three channels are compatible
with the individual color orderings:

A4(1, 2, 3, 4) = −
4

3

s

1

2
+

2

3

u

4

1
= −ns

s
+

nu

u

A4(1, 3, 2, 4) = +
2

4

t

1

3
−

2

3

u

4

1
= +

nt

t
− nu

u

A4(1, 3, 4, 2) = +
4

3

s

1

2
−

2

4

t

1

3
= +

ns

s
− nt

t

(3.4.2)

At this point we can make use of the generalized gauge transforma-
tions introduced in (3.1.13) to modify the numerators ns, nt and nu

and ensure that they satisfy color-kinematics duality, i.e. they obey
the relations (3.3.1)-(3.3.2). However, this does not exploit the full
potentialities of the generalized gauge transformations: these can be
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extended to non-local transformations. In particular, the full amplitude
in (3.4.1) is unchanged if we add an extra term

χ(s, t, u)(cs + ct + cu), (3.4.3)

where the generalized gauge parameter χ is now non-local. Note that
this extra term transforms the numerators to a new set (ns, nt, nu)→
(n̂s, n̂t, n̂u), but the overall effect on the full amplitude is irrelevant
because of the Jacobi identity among the color factors inside (3.4.3).
Now we can use the non-local choice

χ = −nu

u
(3.4.4)

to force the transformed numerator n̂u to vanish:

(ns, nt, nu) −→ (n̂s, n̂t, n̂u) =

(
ns −

s
u

nu, nt −
t
u

nu, 0
)

. (3.4.5)

Note that the Jacobi identity among the transformed (n̂s, n̂t, n̂u) still
holds, but it just leaves one independent numerator n̂s = −n̂t, as
n̂u = 0. Ultimately, using the transformed numerators inside the
colored-amplitudes (3.4.2) we straightforwardly obtain

A4(1, 2, 3, 4) =
t
s

A4(1, 3, 2, 4) =
t
u

A4(1, 3, 4, 2). (3.4.6)

This is a non-trivial set of relations among color-ordered amplitudes
and it is the first example of the BCJ relations.

This procedure can be generalized at higher points to obtain new
relations among color-ordered amplitudes. By refining the scheme
introduced above, the BCJ relations at n-point can be obtained with
the following steps:

• express all the numerators in terms of (n− 2)! independent ones
using Jacobi identities according to (3.3.1)-(3.3.2);

• solve for (n− 3)! basis numerators in terms of a color-ordered
amplitude to which they contribute;

• force the remaining (n− 2)!− (n− 3)! to vanish by means of
non-local gauge transformations.

The remaining (n− 2)!− (n− 3)! partial amplitudes which did not
get involved in the second step are then naturally expressed in terms
of a (n− 3)! basis from their ∑

i

ni
∏αi

sαi
parametrization. The resulting

system of equations among partial amplitudes can be brought in the
form

s12 An (2, 1, 3, . . . , n) + (s12 + s13) An (2, 3, 1, 4 . . . , n) + . . .+

(s12 + s13 + . . . + s1,n−1) An (2, 3, . . . , n− 1, 1, n) = 0. (3.4.7)
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As a final remark, we emphasize that the existence of a generalized
gauge where all the Jacobi triplets sum to zero (nij + nik + nil = 0) is
just a tool in [11] to perform the basis reduction to (n− 3)! partial
amplitudes. The BCJ relations are stand-alone objects and must hold
independently on the choice of the numerators ni. In other words,
duality-satisfying numerators make identities in (3.4.7) valid on the
spot, but are not the unique solutions to the BCJ relations (see [87, 88]
for more details).

3.5 double copy

The existence of a gauge where color-kinematics duality is satisfied
was crucial in the computation of the BCJ relations and in the resulting
computation of a minimal basis of (n− 3)! partial amplitudes. On the
other hand, this is not the full story about color-kinematics duality:
a second remarkable consequence is that, once we have obtained
numerators ni that obey the same algebraic relations as the color
factors ci according to (3.3.1)-(3.3.2), we can replace

ci → ni (3.5.1)

inside the Yang-Mills amplitude (3.1.6). This simple substitution plays
a crucial role: it allows us to get gravity from Yang-Mills theory on the
spot! The expression

Mtree
n =

(κ

2

)n−2
∑

j∈ trivalent

n2
j

∏ij
sij

(3.5.2)

indeed correctly reproduces gravitational amplitudes. In the expres-
sion above, κ2 = 32πG with G Newton’s constant, and nj are the
kinematic numerator factors of the gauge-theory amplitude. This re-
lation is called the BCJ double-copy relation [13, 89]. First of all,
note that the formula (3.5.2) manifestly reproduces all possible poles
that should appear in the gravity amplitude. Indeed, in color-ordered
amplitudes the allowed physical poles are only those that involve
adjacent momenta, i.e. 1/si,i+1,...,j−1,j, as expected from color-ordered
Feynman rules. On the other hand, gravity amplitudes do not require
a color-ordering and the poles can involve any combination of external
momenta. This is in agreement with (3.5.2), as the sum is performed
over all the possible cubic diagrams with n external legs and all the
possible poles are thus explored in the sum. The double-copy construc-
tion in (3.5.2) has another important property (it will not be exploited
in the present manuscript): the squaring relation can be generalized to

Mtree
n =

(κ

2

)n−2
∑

j∈ trivalent

ñjnj

∏ij
sij

, (3.5.3)

where ñj and nj are two kinematic factors of two distinct Yang-Mills
theories. Only one set of the two numerators has to satisfy the color-
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kinematics duality, while the other copy can be in an arbitrary repre-
sentation. This property is extremely useful once one recalls that the
spectrum of many supergravity theories can be obtained through the
tensor product of two different Yang-Mills theories. For example, the
spectrum of pure N = 4 supergravity is given by (e.g. see [90, 91])

N = 4 supergravity = (N = 4 SYM)⊗ (N = 0 YM) . (3.5.4)

Thus the main insight of (3.5.3) is that BCJ double-copy prescription
can be used to construct the supergravity scattering amplitude by
using the numerators of two distinct (S)YM theories, and only one
copy of the numerators needs to satisfy the duality.

3.6 klt relations

In the previous section we have clarified that gravity and gauge theory
amplitudes are not independent, but a strong link between the two
exists, as gravity amplitudes can be obtained from gauge theory ones
using the double-copy prescription. However, the relation in (3.5.2) is
not unique, and more general relations are available in literature to
understand the link between gravity and gauge theory amplitudes.
The first such example are the so-called KLT relations, derived by
Kawai, Lewellen and Tye in 1985 [12]. The KLT relations have been ini-
tially derived in string theory and they state that the n-point tree-level
closed string scattering amplitude is related to a sum over products of
n-point open string string partial amplitudes. The coefficients of the
sum depend on the string tension 1/(2πα′) as well as on kinematic
variables. The KLT relations are derived by monodromy arguments
on the worldsheet, and their existence reflects the fact that the Hilbert
space of closed string states is simply the tensor product of two open
string states. The non-triviality of the KLT relations is that the factor-
ization into open string amplitudes survives the integrals over the
insertion points of the vertex operators, i.e. the closed string integrand
over the moduli space factorizes into left- and right-movers without
any correlation function among them. The KLT relations at n-points
can be expressed in the following form:

Mtree
closed,n = ∑

ρ,τ∈Sn−3

Atree
open,n(1, ρ(2, . . . , n− 2), n− 1, n)

Sα′(ρ|τ)Atree
open,n(1, τ(2, . . . , n− 2), n, n− 1). (3.6.1)

In the expression above, Sn−3 denotes the group of permutations
in (2, 3, . . . , n− 2), and Sα′ , called KLT matrix, is a (n− 3)× (n− 3)
matrix that depends on α′ and on kinematic variables and that pairs
the different permutations. Also, Atree

open,n describes a color-ordered
open string amplitude at n-point. As an example, we can consider the
easiest case n = 4, where the KLT relation reads as

Mtree
closed,4 = −sin(πs12)

2πα′
Atree

open,4(1, 2, 3, 4)Atree
open,4(1, 2, 4, 3). (3.6.2)
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In the expression above, the external momenta are rescaled by a factor
α′ to guarantee the correct dimensions.

String scattering amplitudes are fascinating objects per se. However
they have interesting implications on scattering amplitudes in quan-
tum field theories. Indeed, it is believed that string theories form the
UV completions of (super)gravity theories and, in the infinite tension
limit α′ → 0, the strings shrink to point particles and Einstein and
Yang-Mills theories are recovered. In particular, in this limit the closed
string amplitudes with massless spin-2 string external states become
the regular graviton scattering amplitudes Mn discussed in section 3.5
and the open-string partial amplitudes with external massless spin-1
states become the color-ordered gluon amplitudes An. Thus, in the
limit α′ → 0, KLT offers a relationship between tree-level Mn and An

for each n. We show now how the field theory limit is extracted in the
case n = 4. The relation (3.6.2) can be reformulated as

Mtree
closed,4 =− πs12

Γ(1 + s12)Γ(1− s12)
A4(1, 2, 3, 4)

Γ(1 + s12)Γ(1 + s23)

Γ(1 + s12 + s23)

× A4(1, 2, 4, 3)
Γ(1 + s12)Γ(1 + s13)

Γ(1 + s12 + s13)

=Mtree
4

Γ(1 + s12)Γ(1 + s13)Γ(1 + s23)

Γ(1− s12)Γ(1− s23)Γ(1− s13)
, (3.6.3)

where in the first line we have used

sin(πs12)

2πα′
=

πs12

Γ(1 + s12)Γ(1− s12)
, (3.6.4)

and

Atree
open,4(1, 2, 3, 4) = A4(1, 2, 3, 4)

Γ(1 + s12)Γ(1 + s23)

Γ(1 + s12 + s23)
. (3.6.5)

The last relation in (3.6.5) is an exact relation in string scattering ampli-
tudes: essentially, it states that the field theory limit of the amplitude,
i.e. a color-ordered amplitude in Yang-Mills, is completely disentan-
gled from the integral over the moduli space. It is worth to point out
further details about (3.6.5). In particular, we can make explicit the
dependence on α′ of the kinematic variables, i.e. rescale sij → α′sij,
and perform a series expansion in α′:

Atree
open,4(1, 2, 3, 4) = A4(1, 2, 3, 4)

(
1− 1

6
α′2
(
π2s12s23

)
+ O

(
α′3
))

.

(3.6.6)
At order zero in α′, the amplitude is exactly the a color-ordered am-
plitude in Yang-Mills as expected. The extra-terms in α′2 and higher
orders are interpreted in the field theory language as effective vertices
obtained by integrating out massive modes in string theory. Similar
considerations can be carried out in the last line of (3.6.3), where the or-
der zero in α′ gives exactly the four point (super)gravity amplitude. In
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particular, we can formulate the field theory limit of the KLT relation
in (3.6.3):

Mtree
4 (1, 2, 3, 4) = −s12A4(1, 2, 3, 4)A4(1, 2, 4, 3). (3.6.7)

The idea behind this expression is similar to the double copy construc-
tion in section 3.5, i.e. tree level scattering amplitudes in gravity are
expressed as squares of scattering amplitudes in Yang-Mills theory5.
Note the presence of the prefactor s12, it is crucial to ensure that the
locality structure of the resulting gravity amplitude is correct, that is,
double poles are avoided. Going back to the KLT relations at n points
in (3.6.1), we formulate the field theory limit α′ → 0 of KLT relations
as

Mtree
n = ∑

ρ,τ∈Sn−3

An(1, ρ(2, . . . , n− 2), n− 1, n)

S0(ρ|τ)An(1, τ(2, . . . , n− 2), n, n− 1). (3.6.8)

The entries of the (n− 3)× (n− 3) KLT matrix are of type sij, and
it is widely known among the theoretical physics community that
their task is to guarantee that no double poles appear in the product
of the two Yang-Mills amplitude. In other words, the KLT formula
guarantees that all the possible poles inside a gravity amplitude are
reconstructed. However, there is still a lack of a rigorous mathematical
proof for this property —e.g. see [93] for more details. For n = 4, 5 the
field theory KLT relations read

Mtree
5 (1, 2, 3, 4, 5) =s23s45 A5(1, 2, 3, 4, 5)A5(1, 3, 2, 5, 4) + (3↔ 4)

Mtree
6 (1, 2, 3, 4, 5, 6) =− s12s45A6(1, 2, 3, 4, 5, 6)

(
s35A6(1, 5, 3, 4, 6, 2)+

+ (s34 + s35)A6(1, 5, 4, 3, 6, 2)
)
+ perms.(2, 3, 4).

(3.6.9)

The KLT relations have a deep origin in string theory and the link to the
double copy prescription in (3.5.2) is manifest. Currently, KLT relations
have been established for tree-level scattering amplitudes. However,
in a recent work by Stieberger [94], an extension to loop-level, known
as the one-loop KLT relation, has been presented in the literature. The
amplitudes community had foreseen the existence of this extension
based on several recent results, including the explicit one-loop KLT
formula in field theory that was derived in [95] using forward limits
of tree amplitudes (CHY representations), and the extension of this
result to one-loop matrix elements of effective operators from string
tree-level, which was discussed in [96].

The connection between the KLT formula and the double copy
prescription provides further indications of the feasibility of uplifting

5 The correspondence of double copy and KLT formulae is well established in literature,
e.g. see [92].
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the former to loop level. Indeed, the color-kinematics duality and
double copy construction discussed in this chapter are believed to
hold true when extending scattering amplitudes from tree-level to
loop-level. Analogous to the tree level case (3.1.6), an L-loop m-point
gauge theory scattering amplitude can be organized as,

A
(L)
m = gm−2+2L ∑

i

∫ L

∏
l=1

dDℓl

(2π)D
cini

∏αi
sαi

, (3.6.10)

where the sum runs over the distinct L-loop m-point diagrams with
only cubic vertices. Each such diagram corresponds to a unique color
factor ci. It also has an associated denominator corresponding to the
product of the denominators of the Feynman propagators ∼ 1/sαi of
each internal line of the diagram. As for tree level, the representation
of the amplitude in terms of cubic diagrams is trivial. The non-trivial
part is to find representations of the amplitude where the duality holds
so that the integrand kinematic numerators ni satisfy the duality in
(3.3.1)-(3.3.2). Whether this can be done in general at loop level remains
a conjecture, although there is considerable evidence in literature [17–
20]. If the amplitude in (3.6.10) manifests the color-kinematics duality,
we may now replace the color factors of the first amplitude with the
duality-satisfying numerators ñi of the second one. This gives the
loop-level double copy formula for gravitational scattering amplitudes
[11, 13]:

M
(L)
m =

(κ

2

)m−2+2L
∑

i

∫ L

∏
l=1

dDℓl

(2π)D
niñi

∏αi
sαi

. (3.6.11)

A formal proof of the constructions in (3.6.10)-(3.6.11) is not present
yet, even if many results at loop level have already been obtained in
literature and the general idea in the amplitudes community is that
this is not just a conjecture. In this case, strong links with string theory
are expected.





4
B E R E N D S - G I E L E C U R R E N T S A N D P E RT U R B I N E R S

In this chapter, we review the basic ideas of Berends–Giele recursion
relations and their applications to the computation of tree-level scat-
tering amplitudes in Yang-Mills theory. The Berends–Giele recursion
shows a close connection to the more recent perturbiner technique.
This technique originates from a systematic solution of the classical
field equations in massless quantum field theories and allows to obtain
a generating function for all tree-level scattering amplitudes in a given
theory. We will show the basics of this technique focusing on pure
Yang-Mills theory.

4.1 berends–giele recursions

In 1987 Berends and Giele have introduced an efficient approach to
determine the tensor structure of tree amplitudes in arbitrary D di-
mensions in pure Yang-Mills theory [10]. The key idea of the method
is to recursively combine all color-ordered Feynman diagrams involv-
ing multiple external on-shell legs and a single off-shell leg, which
are now referred to as Berends-Giele currents. This recursion is imple-
mented via currents Jµ

12...p that depend on the polarization vectors ε
µ
i

and momenta kµ
i of the external particles i = 1, 2, . . . , p. These are

subject to the following on-shell constraints

ε i · ki = ki · ki = 0 i = 1, 2, . . . . (4.1.1)

The Berends-Giele recursion is stated through the following combina-
tion of currents of arbitrary multiplicity:

Jµ
i = ε

µ
i , sP Jµ

P = ∑
XY=P

[
JX, JY

]µ
+ ∑

XYZ=P

{
JX, JY, JZ

}µ, (4.1.2)

where [
JX, JY

]µ
= (kY · JX) Jµ

Y − (kX · JY) Jµ
X +

1
2
(
kµ

X − kµ
Y

)
(JX · JY)

(4.1.3){
JX, JY, JZ

}µ
= (JX · JZ) Jµ

Y −
1
2
(JX · JY) Jµ

Z −
1
2
(JY · JZ) Jµ

X. (4.1.4)

The external states have been grouped into multiparticle labels (or
words, as commonly are defined) P = 12 . . . p, usually represented with
capital letters. The summation over XY = P on the right-hand side of
(4.1.2) tells us to deconcatenate P into non-empty words X = 12 . . . j
and Y = j + 1 . . . p with j = 1, 2, . . . , p − 1, generating in this way

57
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|P| − 1 terms. Note that a deconcatenation includes the notion of
ordering, no labels have to be swapped in this process: for instance,
the summation over XY = P with P = 1234 of length four incorporates
the pairs (X, Y) = (123, 4), (12, 34) and (1, 234). In a similar fashion,
the sum over XYZ = P involves deconcatenations into non-empty
words X = 12 . . . j, Y = j + 1 . . . l and Z = l + 1 . . . p with 1 ≤ j < l ≤
p− 1. This presentation of the Berends-Giele setup using words was
motivated by recent literature reviews, such as the ones found in [97,
98].

In (4.1.2) sP represents a Mandelstam invariant, defined through the
multiparticle momentum kP as

kµ
P = kµ

1 + kµ
2 + . . . + kµ

p, sP =
1
2

k2
P. (4.1.5)

The brackets in (4.1.3)-(4.1.4) capture the cubic and quartic Feynman
vertices of pure Yang-Mills theory in Lorenz gauge. In figure 4.1 we
depict the mechanism of the Berends-Giele recursion: by deconcatenat-
ing XY = P and XYZ = P, we are effectively connecting lower-rank
currents Jµ

X, Jν
Y and Jλ

Z using cubic and quartic interactions in all possi-
ble ways such that the color ordering of the on-shell legs in the word
P = 12 . . . p is preserved.

From this construction, it is clear that Berends-Giele currents must
be connected somehow to color-ordered on-shell amplitudes. In par-
ticular, the n = p + 1 amplitude is computed by taking the off-shell
leg in the current Jµ

P on shell: we can implement this by contracting
with the polarization vector Jµ

n = ε
µ
n of the last leg and by truncating

the propagator s−1
12...p contained in Jµ

P . This is necessary in order to
remove the divergence coming out from the momentum conservation
k2

12...p = (−kn)2 = 0. Finally, the compact expression for the n = p + 1
color-ordered amplitude is given by

An(1, 2, . . . , n) = s12...n−1 Jµ
12...n−1 Jn,µ. (4.1.6)

As an example, we consider the rank-two Berends-Giele current Jµ
12:

using the recursion relation in (4.1.2) with the value of the letters
X = 1 and Y = 2, we obtain

s12 Jµ
12 = (k2 · ε1)ε

µ
2 − (k1 · ε2)ε

µ
1 +

1
2

ε1 · ε2(k
µ
1 − kµ

2 ). (4.1.7)

With this current, we are can use (4.1.6) and compute the three-point
Yang-Mills color-ordered amplitude as

A3(1, 2, 3) = s12 Jµ
12 J3 µ

= (k2 · ε1)(ε2 · ε3)− (k1 · ε2)(ε1 · ε3) + (ε1 · ε2)ε3 · k1,
(4.1.8)

where in the second line we have exploited momentum conservation
and on-shellness condition to write ε3 · k2 = −ε3 · k1.
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P

1

2

p

p− 1
· · · −→··

·

Y

p

p− 1
··
·

X
2

1

··
·

· · · +∑
XY=P

· · ·

p

p− 1

··
· Z

2

1

··
· X

··
· Y · · ·∑

XYZ=P

Fig. 4.1: Berends-Giele currents Jµ
12...p expressed as combinations of lower-

weighted currents connected with cubic and quartic Feynman vertices in
such a a way that the color order is preserved.

In order to further investigate the properties of the Berends-Giele
currents in (4.1.2), it is worth now to introduce the shuffle product. The
shuffle product P�Q of two words P = p1 . . . p|P| and Q = q1 . . . q|Q|
is defined as a sum over all permutations of P ∪ Q that preserve
orderings of both words P and Q. It is recursively defined by

P�∅ = ∅�P = P, P�Q = p1(p2 . . . p|P|�Q) + q1(q2 . . . q|Q|�P).
(4.1.9)

Here we assume linearity property once we unfold the shuffle product
and sums of words appear in a subscript, e.g. Jµ

1�2 = Jµ
12+21 = Jµ

12 + Jµ
21.

Now we point out that the symmetry properties [JX, JY] = −[JY, JX]

and {JX, JY, JZ}+ cyc(X, Y, Z) = 0 of the brackets in (4.1.3) and (4.1.4)
imply that the currents in (4.1.2) obey shuffle symmetry

Jµ
P�Q = 0, P, Q ̸= 0. (4.1.10)

While [99] had previously confirmed this property at lower multi-
plicities, a rigorous proof for it has been presented recently in the
appendix of [100]. Making use of (4.1.10), it is now easy to see that
the amplitude formula (4.1.6) propagates the shuffle symmetry of the
currents and we end up with the relations

An((P�Q), n) = 0, P, Q ̸= 0, (4.1.11)

where the words P and Q involve external state labels 1, 2, . . . , n− 1. It
should be noted that the aforementioned relations offer an alternative
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expression of the Kleiss–Kuijf (KK) relations discussed in section 3.2.
While this equivalence is not immediately apparent and was not
demonstrated in the original work of Berends and Giele, it has been
proven in more recent works, as described in [97, 101].

4.2 perturbiner methods

The Berends–Giele construction of the previous section shows a close
connection to the more recent perturbiner technique. This technique
originates from the common statement that tree-level scattering ampli-
tudes are all encoded in the solutions of the classical field equations
in massless quantum field theories. Taking inspiration from this idea,
Rosly and Selivanov [8, 9, 102–105] introduced an ansatz for such
solutions as an infinite expansion in terms of plane-wave states. Us-
ing this ansatz, called perturbiner expansion, one actually obtains a
generating function for all tree-level scattering amplitudes in a given
theory. This formalism is closely related to the Berends-Giele recursion
method outlined in the previous section, as was initially highlighted in
[100]. Since then, numerous applications of the perturbiner formalism
have been documented in literature.

In this section we introduce two different types of perturbiner
expansions [106]: color-stripped and color-dressed. These can be used
to construct recursion relations for various theories with and without
color degrees of freedom, but we will mainly focus our attention on
pure Yang-Mills theory.

4.2.1 Color-Stripped Perturbiners

Color-stripped perturbiners can be used to construct Berends–Giele
currents and partial amplitudes for theories with colors. We consider
here the case of U(N) Yang-Mills theory —see [106, 107] for a similar
setup. Here the gauge-theory Lagrangian, already seen in (3.1.1),

LYM = −1
4

Tr(FµνFµν) (4.2.1)

leads to the following non-linear equation of motion

∂LYM

∂Aλ
=
[
∇µ, Fλµ

]
= 0. (4.2.2)

Here the Lie-algebra valued gluon field is set as Aµ = Aa
µTa, and the

group theory generators and structure constants have the same con-
ventions used in section 3.1. The connection ∇µ and the corresponding
field strength Fµν are defined as

∇µ = ∂µ − Aµ, Fµν = ∂µ Aν − ∂ν Aµ − [Aµ, Aν]. (4.2.3)
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For convenience in the calculation, the coupling constant has been
set to g = −i

√
2. Lorenz gauge ∂µ Aµ = 0 simplifies the equations of

motion in (4.2.2) to the equation

□Aλ = [Aµ, ∂µ Aλ] + [Aµ, Fµλ]

= 2[Aµ, ∂µ Aλ] + [∂λ Aµ, Aµ] +
[
[Aµ, Aλ], Aµ

]
. (4.2.4)

We can derive formal solutions to (4.2.4) by means of the perturbiner
ansatz

Aµ = ∑
P

Jµ
PTPekP·x = ∑

i
Jµ
i Tai eki ·x + ∑

ij
Jµ
ij T

ai Taj ekij·x + . . . , (4.2.5)

Here P represents a non-empty word P = 12 . . . m, such that

TP = Ta1 Ta2 · · · Tam , (4.2.6)

and kµ
P = kµ

1 + kµ
2 + · · · kµ

m, using the same notation introduced in
(4.1.5). At this stage, we take the momenta kµ

i to be imaginary for
later convenience, however this won’t cause problems in tree-level
computations. Similarly, we can write down the perturbiner expansion
for the field strength:

Fµν(x) = ∑
P

Fµν
P TPekP·x. (4.2.7)

The reason we refer to the above perturbiner expansions as color-
stripped is because the coefficients Aµ

P and Fµν
P appearing in the ex-

pansion do not have any color degrees of freedom. The equation of
motion in (4.2.4) can be solved recursively for the coefficients Jµ

P by
collecting terms of the same order, i.e., with the same number of Lie
algebra generators Tai on both sides. The choice of the letter Jµ

P was not
a coincidence: these coefficients represent exactly the Berends-Giele
currents encountered in section 4.1, as it will be clear in the following.

At the linear order in the generators Tai , we have

∑
i

k2
i Jµ

i Tai eki ·x = 0, (4.2.8)

and, using the definition of the field strength in (4.2.3),

∑
i

Fµν
i Tai eki ·x = ∑

i

(
kµ

i Jν
i − kν

i Jµ
i

)
Tai eki ·x. (4.2.9)

These relations are equivalent to imposing the momenta to be lightlike,
k2

i = 0, and the field strength to be Fµν
i = kµ

i Jν
i − kν

i Jµ
i . At the quadratic

order we find

∑
ij

k2
ij Jµ

ij T
ai Taj ekij·x = ∑

ij

(
2(k j · Ji)Jµ

j + kµ
i (Ji · Jj)

)
[Tai , Taj ] ekij·x.

(4.2.10)
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Because of the algebraic structure of the right-hand side, we find
Jµ
ij = −Jµ

ji , so that the generators on the left-hand side organize into
commutators. In this way, the sum can be efficiently rearranged as

∑
i<j

k2
ij Jµ

ij [T
ai , Taj ] ekij·x =

∑
i<j

(
2(k j · Ji)Jµ

j + kµ
i (Ji · Jj)− (i↔ j)

)
[Tai , Taj ] ekij·x. (4.2.11)

Comparing the coefficients of each [Tai , Taj ], we find that Jµ
ij satisfies

the recursion relation

sij Jµ
ij =

(
(k j · Ji)Jµ

j +
1
2

kµ
i (Ji · Jj)− (i↔ j)

)
, (4.2.12)

that exactly matches the rank-two Berends-Giele current defined in
(4.1.7). Note that in the equation above we made use of the Mandelstam
invariant sij defined for a generic word in (4.1.5). Using the same
symmetry argument for the rank-two field strength Fµ

ij and comparing
the coefficient of each commutator, we obtain:

Fµν
ij = kµ

ij J
ν
ij − kν

ij J
µ
ij −

(
Jµ
i Jν

j − (i↔ j)
)

. (4.2.13)

One can now use the same procedure at higher orders and find
recursion relations for higher-rank perturbiners. In particular, from
the symmetry properties of the equation of motion in (4.2.4), we have
the shuffle symmetries

Jµ
P�Q = Fµν

P�Q = 0, P, Q ̸= 0. (4.2.14)

With these symmetries, one finds compact expressions for the re-
cursion relations for perturbiner coefficients. At this stage, it’s not a
surprise that the recursion relation for the coefficient Jµ

P is identical to
(4.1.2), i.e. it reads as

sP Jµ
P = ∑

XY=P

[
JX, JY

]µ
+ ∑

XYZ=P

{
JX, JY, JZ

}µ, (4.2.15)

where the brackets are defined exactly as (4.1.3)-(4.1.4). In other words,
we have recovered the recursion that computes the Berends-Giele
currents using the different perspective of the perturbiner method.
Here, we able to write a recursion also for the coefficients Fµν

P

Fµν
P = kµ

P Jν
P − kν

P Jµ
P − ∑

XY=P

(
Jµ
X Jν

Y − Jµ
Y Jν

X
)

. (4.2.16)

Again, we use the same notation of the previous section, the sum
goes over all deconcatenations of the word P into non-empty ordered
words X and Y.

As pointed out in the previous section, the Berends-Giele currents
are linked to tree-level amplitude with one leg off-shell. Here the only
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ingredient that we miss in order to compute amplitudes via (4.1.6) are
boundary conditions for the rank-one currents Jµ

i . We can obtain these
from imposing that the linear order in (4.2.5) are solutions of the free-
field equations, i.e. the one-particle states Jµ

i = ε
µ
i are the polarization

vectors, which satisfy the transversality condition ki · ε i = 0. In general,
this property is wider and one can check that kµ

P Jµ
P = 0 holds for any

P. Now we are able to use the compact formula (4.1.6) for on-shell
color-ordered amplitudes in Yang-Mills, and the equivalence of the
perturbiner method for Yang-Mills and the Berends-Giele technique is
complete [100].

Before conc luding this section, it is worth doing some extra remarks
about the Berends-Giele recursion rederived in (4.2.15) in the pertur-
biner context. Using the equation of motion in the second line of (4.2.4),
we have been able to obtain a recursion in terms of the Jµ

P coefficients
only, and, in this way, we have recovered the Berends-Giele formula
where the contributions of cubic and quartic Feynman vertices in
Yang-Mills are manifest. However, this choice was arbitrary and in
principle we could have constructed a recursion by combining the
perturbiners for Aµ and Fµν. This can be achieved by using the first
line of (4.2.4) as the generating function for the recursion relation, and
insert there the perturbiners of for Aµ and Fµν. In this way, we obtain
an alternative formulation [100, 107] of the recursion for perturbiner
coefficient Jµ

P as

sP Jµ
P =

1
2 ∑

P=XY

(
(JX · kY)Jµ

Y + Jλ
X Fλµ

Y − (X ↔ Y)
)

, (4.2.17)

while the recursion for the coefficient Fµν
P keeps the same of (4.2.16).

Formally, this representation doesn’t affect the value of the coefficient
Jµ
P . However, here the triple deconcatenation, encoding quartic vertices,

present in (4.2.15) disappears [107]. This leaves us with simpler sym-
metry properties for the currents Jµ

P , that will be accurately exploited
later in the manuscript.

4.2.2 Color-Dressed Perturbiners

In the previous section we have made use the potentiality of color-
stripped perturbiners to obtain recursions for the coefficients of the
perturbiner expansion in Yang-Mills theory that correctly reproduce
the color-ordered Berends-Giele formula in (4.1.2). Now our focus is
on introducing color degrees of freedom within the coefficients of the
perturbiner expansion, obtaining the so-called color-dressed perturbiner.
In this way, we aim to obtain color-dressed currents that in turn can be
used to construct full Yang-Mills amplitudes. The idea of color-dressed
perturbiners takes origin from the study of theories without color
ordering, e.g. special Galileon or Born–Infeld theory, where we need
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to introduce a different notion of perturbiner expansion. Unlike the
previous section, where the matrix products TP were used to organize
the perturbiner expansion, here we lack Lie algebra generators, so
the plane waves ekP·x are the only tools to separate the terms in the
expansion.

scalar theory. As a pedagogical example, we consider the case
of a cubic scalar theory. Here the equation of motion reads as

□φ = φ2. (4.2.18)

We use the following perturbiner expansion:

φ(x) = ∑
P

φPekP·x = ∑
i

φieki ·x + ∑
i<j

φijekij·x + ∑
i<j<k

φijkekijk ·x + . . . .

(4.2.19)
Here the sum goes over non-empty ordered words P = p1 p2 . . . pm

with p1 < p2 < . . . < pm to avoid double counting. Now, plugging
this inside the equation of motion in (4.2.18), we obtain:

□φ =

(
∑

i
φieki ·x + ∑

i<j
φijekij·x + . . .

)(
∑

p
φpekp·x + ∑

p<q
φpqekpq·x + . . .

)
= ∑

i
∑

p
φi φpekip·x + ∑

i<j
∑

p
φij φpekijp·x + ∑

i
∑
p<q

φi φpqekipq·x + . . . .

(4.2.20)

In order to have a proper match with the left-hand side, we have to
reorganize the sums in the expression above as

∑
i

∑
p
= ∑

i<p
+ ∑

p<i
, ∑

i<j
∑

p
= ∑

i<j<p
+ ∑

i<p<j
+ ∑

p<i<j
. (4.2.21)

Also, diagonal terms are not allowed in the left-hand side of (4.2.20),
so we need to take perturbiners φi to be nilpotent, i.e., φ2

i = 0, so
that these terms do not contribute. With these ingredients, we can
use the plane waves ekp·x, ekpq·x and so on, as a bookkeeping device to
construct the following recursions from (4.2.20):

k2
r φr = 0, k2

rs φrs = φr φs + φs φr, (4.2.22)

k2
rst φrst = φrs φt + φrt φs + φst φr + φr φst + φs φrt ++φt φrs. (4.2.23)

This straightforwardly generalizes to the following recursion for per-
turbiners in cubic scalar theory:

φP = ∑
1

2sP
∑

P=Q∪R
φQ φR. (4.2.24)

As it is clear from the organization of the sums in (4.2.19)-(4.2.21), the
sum over P = Q ∪ R is performed over distributions of the letters of
the ordered non-empty word P into ordered words Q and R.

P = 12 → (Q, R) = (1, 2), (2, 1)

P = 123 → (Q, R) = (12, 3), (13, 2), (23, 1), (1, 23), (2, 13), (3, 12).
(4.2.25)
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Fixing the initial conditions φi = 1, we can give examples of the first
orders of the recursion in (4.2.24):

φ12 =
1

s12
, φ123 =

1
s123

(
1

s12
+

1
s13

+
1

s23

)
. (4.2.26)

The amplitudes are computed with standard formula seen in the
previous section, that is

Aφ3

n = lim
k2

n→0
s12...n−1φ12...n−1φn. (4.2.27)

yang-mills theory. We now focus our attention again on Yang-
Mills theory and we consider an alternative perturbiner formulation
using the prescription just seen for the scalar theory. In this case the
perturbiner ansatz reads

Aµ,a(x) = ∑
P

Jµ,a
P ekP·x Fµν,a(x) = ∑

P
Fµν,a

P ekP·x, (4.2.28)

where, as previously anticipated, we don’t explicit the dependence
on the generators Ta of the gauge group, but we absorb the color
degrees of freedom inside the perturbiner coefficients Jµ,a

P and Fµν,a
P .

Exploiting the same construction as in the scalar theory case, we use
the perturbiner ansatz (4.2.28) inside the equations (4.2.3)-(4.2.4) and
derive the recursions

Jµ,a
P =

1
2sP

f a
bc ∑

P=Q∪R

(
Jb
Q · kR Jµ,c

Q + Jν,b
Q Fνµ,c

R

)
(4.2.29)

Fµν,a
P = kµ

P Jν,a
P − kν

P Jµ,a
P − f a

bc ∑
P=Q∪R

Jµ,b
Q Jν,c

R , (4.2.30)

where for convenience we have modified the notation of the structure
constants f c

ab with respect to (3.1.3). The initial conditions now read
Aµ,a

i = ε
µ
i δa,ai where we make explicit the dependence on the adjoint

index ai of the i−th particle. For example, the color-dressed rank-two
current reads

Jµ,a
12 =

f a
bc

2s12

(
ε1 · k2δba1 ε

µ
2δca2 + εν

1δba1(kν
2ε

µ
2 − kµ

2 εν
2)δ

ca2 + (1↔ 2)
)

=
f a
a1a2

s12

(
ε1 · k2 ε

µ
2 +

1
2

ε1 · ε2 kµ
1 − (1↔ 2)

)
. (4.2.31)

We can recognize the coefficient of f a
a1a2 to be rank-two color-stripped

current Jµ
12 met in (4.1.7) and later in (4.2.12). This is actually a broader

statement, as higher-rank currents are systematically related to those
met in section 4.2.1. Indeed, it can be shown that the following relation
holds:

Jµ,a
12...m = Fa

12...m Jµ
12...m + perm.(2, 3, . . . , m), (4.2.32)

where we have introduced the contraction

Fa
12...m = f b

a1a2
f c
ba3
· · · f a

zam
. (4.2.33)



66 berends-giele currents and perturbiners

Note that the permutations in (4.2.32) are restricted to the set perm.
(2, 3, . . . , m), while the leg labeled 1 is fixed. This can be achieved as a
result of an extensive use of Jacobi identities

f b
a1a2

f c
ba3

+ cyc(a1, a2, a3) = 0. (4.2.34)

Using this type of relations, we can always modify the contractions
among structure constant in a way consistent with (4.2.33). Full ampli-
tudes are computed through

Atree
n = lim

k2
n→0

s12...n−1 Jµ,a
12...n−1 Ja

n,µ

= ∑
σ∈Sn−2

Fan
1σ(23...n−1)An (1, σ(2, . . . , n− 1), n) . (4.2.35)

In this construction the amplitudes come out naturally organized into
the multi-peripheral basis of partial amplitudes already encountered
in (3.2.7).

As a final remark in this chapter, we consider again the recursion in
(4.2.29). Exploiting the antisymmetry f b

a1a2 = − f b
a2a1 , we can rewrite

the recursion as

Jµ,a
P =

1
2sP

f a
bc ∑

P=Q∪R
|Q|>|R|

(
Jb
Q · kR Jµ,c

Q + Jν,b
Q Fνµ,c

R − (Q, b↔ R, c)
)

.

(4.2.36)

This representation is formally equivalent to the one in (4.2.29). How-
ever, here we have made manifest the symmetry (Q, b ↔ R, c), that
will play an important role in the following, when a novel method for
the construction of perturbiner coefficients will be presented.
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5
C O M P T O N - L I K E S C AT T E R I N G W I T H N P H O T O N S
A N D O N E G R AV I T O N

In this chapter we compute tree-level scattering amplitudes for a scalar
particle coupled to an arbitrary number n of photons and a single
graviton. We employ the worldline formalism as the main tool to
compute the irreducible part of the amplitude, where all the photons
and the graviton are directly attached to the scalar line. Next, we
derive a tree replacement rule to construct the reducible parts of the
amplitude. We test our construction by verifying on-shell properties of
the amplitude, e.g. transversality at n = 2 among the others. Results
discussed in this chapter are published in [108].

5.1 the worldline path meets one graviton

In section 2.4 we have reviewed the worldline description of scalar
propagators dressed with different background fields. In particular, we
focused our attention on a Maxwell background field, and, expressing
it as a sum of plane waves, we have obtained a worldline master
formula (2.4.13) for the two-scalar n-photon scattering. In our work,
we have attempted to push forward the current state of the art of the
worldline description of dressed propagators through the introduction
of gravity. Gravity can be included inside the worldline path integral
by extending it to a curved spacetime, i.e. we introduce a background
metric gµν(x(τ)) and we replace the Minkowski flat metric ηµν with

ηµν −→ gµν(x(τ)). (5.1.1)

The action that enters in the Feynman representation of the propagator
(2.4.5) is now modified to

S =
∫ T

0
dτ

(
1
4

gµν(x(τ))ẋµ ẋν + ie ẋ · A(x(τ)) + ξR
)

, (5.1.2)

where we have replaced the free kinetic part by the geodesic one and
ξ takes into account the non-minimal coupling of the scalar particle
to gravity. This worldline action for curved spacetime leads to con-
siderable mathematical subtleties, as discussed in [109]. In particular,
the need for general covariance requires a proper redefinition of the
standard path integral measure:

Dx(τ) −→ Dx(τ) ∏
0≤τ≤T

√
det gµν(x(τ)). (5.1.3)

We can rewrite these metric factors in a more efficient way by expo-
nentiating them. A convenient way of doing this is by introducing

69
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auxiliary fields (Lee-Yang ghosts)[110] which are respectively commut-
ing aµ and anticommuting bµ, cµ with vanishing boundary conditions.
This is obtained in practice via

Dx(τ) ∏
0≤τ≤T

√
det gµν(x(τ)) = Dx(τ)

∫
DaDbDc e−Sgh(x;a,b,c), (5.1.4)

where the ghost action is given by

Sgh(x; a, b, c) =
∫ T

0
dτ

1
4

gµν(x) (aµaν + bµcν) . (5.1.5)

Thus the final version of the path integral in (2.4.5) in curved spacetime
is 〈

ϕ(x′)ϕ̄(x)
〉

A,g
=
∫ ∞

0
dTe−m2T

∫ x(T)=x′

x(0)=x
DxDaDbDc

× e−
∫ T

0 dτ
(

1
4 gµν(x)(ẋµ ẋν+aµaν+bµcν)+ieẋ·A(x)+ξ̄R

)
, (5.1.6)

where ξ̄ = ξ− 1/4, and −R/4 is the counterterm which arises employ-
ing worldline dimensional regularization [111]. For simplicity, here
we consider the worldline minimal coupling ξ̄ = 0, which renders
the graviton vertex operator linear in ϵµν. As usual in perturbative
quantum gravity, we can rewrite the metric as the combination of flat
space and a small perturbation:

gµν(x) = ηµν + κ hµν(x), (5.1.7)

where κ is the gravitational coupling constant. The graviton can be
introduced by specifying

hµν(x) = ϵµν eik0·x. (5.1.8)

Using the redefinition of the particle paths introduced in (2.4.8), we
can read off the graviton vertex operator

Vg[ϵ, k0] = eik0·x+ 1
T2 (x′−x)·ϵ·(x′−x)

×
∫ T

0
dτ eik0·

(
(x′−x) τ

T +y
)
+ϵµν

(
2
T (x′−x)µ ẏν+ẏµ ẏν+aµaν+bµcν

)∣∣∣∣∣
lin

, (5.1.9)

where we have re-exponentiated the polarization tensor using the trick
in (2.3.24) —compare with the photon vertex operator in (2.4.10) and
remember that only the part linear in all the polarizations (ε’s and ϵ)
has to be retained. According to the ghost action in (5.1.5), the path
integrals over the auxiliary fields is Gaussian. The auxiliary fields
propagators are 〈

aµ(τ)aν(τ′)
〉
= 2δµνδ(τ, τ′) , (5.1.10)〈

bµ(τ)cν(τ′)
〉
= −4δµνδ(τ, τ′), (5.1.11)
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and we can use them in the computation of the path integrals when a
graviton vertex operator is involved. Now we have all the ingredients
to construct the master formula for the irreducible part of the tree-level
scalar propagator with the insertion of n photons and one graviton:

D(n,1)(p, p′; ε1, k1, . . . , εn, kn; ϵ, k0) = (−ie)n
(
−κ

4

) ∫ ∞

0
dTe−m2T

×
∫

d4x
∫

d4x′ei(p·x+p′·x′)− 1
4T (x−x′)2 1

(4πT)
D
2

〈
n

∏
l=1

VA[ε l , kl ]Vg[ϵ, k0]

〉
,

(5.1.12)

where we have Fourier-transformed the two external scalar legs to
bring the dressed propagator in momentum space1.

As pointed out above, the formula (5.1.12) picks up only the ir-
reducible contribution to the full amplitude. In Feynman diagrams
language, this means that the associated diagrams cannot be divided
into two self-standing contributions by cutting an internal photon or
graviton line. However, it has been already realized by Gertsenshtein
[112] in the 1960s that the Einstein-Maxwell theory must include a
vertex for the interaction of two photons and one graviton at the tree
level, in both vacuum and in the presence of an external constant
magnetic field, which is also imposed by general covariance. Therefore
one needs to compute some reducible contributions to the full n-photon
one-graviton amplitude, in which a graviton is siting on an external
photon. In other words the photons, on their way to the scalar propaga-
tor, are picking up a full-energy graviton, and these contributions are
not included in our above master formula. This occurs because, in our
worldline description, the gravitational and photon fields are treated
as background fields, and their dynamics is not captured by (5.1.12).
Specifically, our formula fails to adequately describe the interaction
between photons and gravitons mentioned earlier, and its contribution
has to be included somehow. In the next sections, we will provide a
specific recipe to handle this task and obtain a useful master formula
for the full Feynman amplitude. As a final remark, we mention that
this difficulty is similar to what happens in flat space scalar QCD,
for which a worldline approach to the computation of the n-gluon
scalar propagator was studied in [113]: it yields the irreducible part of
the n-gluon two-scalar amplitude. However, the non-abelian nature
of the theory implies that, in order to compute the full amplitude
and guarantee transversality on the gluon lines, the latter must be
completed with reducible parts [71].

1 Note that, in our Fourier transform convention, both the external momenta are taken
incoming.
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Fig. 5.1: The Feynman diagram representation for irreducible contributions
to n-photon one-graviton amplitude. The diagrams in the second and third
lines involve quartic vertices that, in the worldline approach, come from
delta functions δ(τi − τj).

5.1.1 Irreducible Part of the Amplitude

In order to explicitly compute the irreducible part of the n-photon one-
graviton amplitude (see figure 5.1) we find it convenient to parametrize
the graviton polarization as

ϵµν := λµρν , (5.1.13)

ε0µ := λµ + ρµ , (5.1.14)

where, in (5.1.13), symmetrization between indices is implied. Such
parametrization has to be understood as a simple bookkeeping device
to combine photon and graviton insertions together2; at the end the
graviton polarization is reconstructed from the term simultaneously
linear in λ and ρ.

It is crucial now to point out that, with a single graviton inser-
tion, the ghost contribution cancels against the singular part of the
⟨ẏµ(τ0)ẏν(τ0)⟩ propagator that appears in the graviton vertex operator.
Indeed, from the definitions (2.4.11)-(2.4.12), the double derivative ∆̇̇00

include a delta function with vanishing argument, that is precisely
compensated by the ghost contribution. We can thus neglect the latter,
provided we take ⟨ẏµ(τ0)ẏν(τ0)⟩ ∼= − 2

T δµν in the graviton sector. The
graviton vertex operator can thus be written as

Vg[ϵ, k0] = eik0·x+
ε0
T ·(x′−x)

∫ T

0
dτ0 eik0·

(
(x′−x) τ0

T +y(τ0)
)
+ε0·ẏ(τ0)

∣∣∣
lin. λ, ρ

,

(5.1.15)

2 This trick looks like a reminiscence of the on-shell factorization of the graviton
polarization tensor ϵµν = εµ ε̄ν. However, in our convention the variables λ and ρ are
simply bookkeeping devices and no on-shell condition is imposed.
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which has the same form as the photon counterpart, with the only
subtlety that the linear part in λ and ρ comes from the quadratic
part in ε0. After some straightforward algebra, we get the n-photon
one-graviton scalar propagator

D(n,1)(p, p′; ε1, k1, . . . , εn, kn; ϵ, k0) = (−ie)n
(
−κ

4

) ∫ ∞

0
dTe−T(m2+p′2)

×
n

∏
l=0

∫ T

0
dτle

(p′−p)·∑n
l=0(−klτl+iε l)+∑n

l,l′=0

(
kl ·kl′∆l−l′−2iε l ·kl′ ∆̇l−l′+ε l ·ε l′ ∆̈l−l′

)∣∣∣
m.l.

(5.1.16)

where again we have to extract the linear contribution in all ε l with
l = 1, . . . , n and in λ and ρ. Here we recall that ∆l−l′ , defined in (2.4.14),
represents the translation-invariant part of the Green’s function, and
∆̈0−0′ = 0 is implied. On the mass shell of the scalar particle, upon
truncation of the external scalar lines, the formula (5.1.16) provides
the irreducible contribution to the tree-level amplitude with n photons,
one graviton and two scalars:

D
(n,1)
irred (p, p′; ε1, k1, . . . , εn, kn; ϵ, k0)

= (p2 + m2)(p′2 + m2)D(n,1)(p, p′; ε1, k1, . . . , εn, kn; ϵ, k0). (5.1.17)

Let us single out some special cases of the previous formula which
will be helpful in the following. We start by considering the case n = 0,
i.e. the graviton-scalar vertex:

D(0,1)(p, p′; ϵ, k0)

=
(
−κ

4

) ∫ ∞

0
dT e−T(m2+p′2)

∫ T

0
dτ0 e(p′−p)·(−k0τ0+iε0)

∣∣∣
m.l.

. (5.1.18)

Using momentum conservation, that in the three-point scattering reads
as p + p′ + k0 = 0, the latter can be reduced to

D(0,1)(p, p′; ϵ, k0) =
κ

4
(p′ − p)µϵµν(p′ − p)ν 1

(p′2 + m2)(p2 + m2)
,

(5.1.19)

and, upon truncation, leads to the amplitude

D(0,1)(p, p′; ϵ, k0) =
κ

4
(p′ − p)µϵµν(p′ − p)ν. (5.1.20)

This correctly reproduces the scalar-graviton vertex in field theory,
depicted as the Feynman diagram

p −p′

k0

.
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For n = 1, the irreducible part of the gravitational photoproduction
amplitude can be easily obtained from

D(1,1)(p, p′; ε1, k1; ϵ, k0) = (−ie)
(
−κ

4

)
×
∫ ∞

0
dTe−T(m2+p′2)

∫ T

0
dτ0

∫ T

0
dτ1 e(p′−p)·(−k0τ0−k1τ1+iε0+iε1)

× ek0·k1|τ0−τ1|+i(ε1·k0−ε0·k1)sgn(τ0−τ1)+2ε0·ε1δ(τ0−τ1)
∣∣∣
m.l.

, (5.1.21)

where the δ(τ0− τ1) part yields the seagull diagram, whereas the time
ordered parts (τ0 > τ1 and τ0 < τ1) yield the diagrams where photon
and graviton are singly emitted by the scalar line with the respective
orderings. Imposing the on-shell conditions on the external legs, we
get the following irreducible contribution to the scattering amplitude

D
(1,1)
irred(p, p′; ε1, k1; ϵ, k0) = (p′2 +m2)(p2 +m2)D̃(1,1)(p, p′; ε1, k1; ϵ, k0)

= eκ
[
(p− p′) · ϵ · ε1 +

ε1 · p′p · ϵ · p
p · k0

− ε1 · p p′ · ϵ · p′
p · k1

]
. (5.1.22)

In Feynman diagram language, this contribution to the full amplitude
corresponds to

p −p′

k0 k1

+
p −p′

k0k1

+
p −p′

k0 k1

.

Finally, let us consider the irreducible part of the two-photon one-
graviton amplitude. Using the worldline approach, we are able to
obtain a quite compact representation of this contribution. We report
here the final result, which reads

D
(2,1)
irred(p, p′; ε1, k1, ε2, k2; ϵ, k0) = κe2

{
2(ε1ϵε2) +

(
−2

ε1 · ε2 (p′ϵp′)
m2 + (p′ + k0)2

+ 2
ε1 · p (ε2ϵ(p′ − p− k1))

m2 + (p + k1)2 + 4
(p′ϵp′) ε1 · (p + k2) ε2 · p

(m2 + (p + k2)2)(m2 + (p′ + k0)2)

+ 2
ε2 · p (ε1ϵ(p′ − p− k2))

m2 + (p + k2)2 + 4
(p′ϵp′) ε2 · (p + k1) ε1 · p

(m2 + (p + k1)2)(m2 + (p′ + k0)2)

+ 4
((p + k1)ϵ(p′ + k2)) ε1 · p ε2 · p′

(m2 + (p + k1)2)(m2 + (p′ + k2)2)
+
(

p↔ p′
))}

, (5.1.23)

where the notation (aϵb) := aµϵµνbν has been introduced. The inter-
ested reader will find details of the computation in the appendix
A.

5.1.2 Reducible Part of the Amplitude

In this section we tackle the problem of the reducible part of the
amplitude. As formerly pointed out, the external graviton can couple



5.1 the worldline path meets one graviton 75

p

k0 k1 k2 kn

· · ·
−p′

+

p

k0k1 k2 kn

· · ·
−p′

+ · · ·

p

k0 k1 k2 kn

· · ·
−p′

+

p

k0k1 k2 kn

· · ·
−p′

+

Fig. 5.2: The Feynman diagram representation of the reducible contribution
to n-photon one-graviton amplitude.

directly to the scalar line, as reproduced by the formula described in
(5.1.16) for the irreducible part of the scattering amplitude, but it can
also couple to the photon lines, giving rise to reducible contributions
—see figure 5.2 for the diagrammatic representation of these contribu-
tions. From a field theory view point the photon-graviton interaction
is encoded in the vertex

V[A, h] =
κ

2

∫
d4xhµνTµν =

κ

2

∫
d4x hµν

(
FµαFν

α −
1
4

δµνFαβFαβ

)
,

(5.1.24)

which, using the tracelessness of the on-shell graviton, leads to the
following tree-level amplitude between two photons and one graviton
(to be called Γgγγ)

Γgγγ[ε, k, ε′, k′; ϵ, k0]

= κ
[
(kϵk)ε · ε′ + (εϵε′)k · k0 − (εϵk)k · ε′ − (kϵε′)ε · k0

]
. (5.1.25)

Here we have used the transversality conditions k0µϵµν = kµεµ = 0
and conservation law k′ = −(k+ k0). The vertex in (5.1.25) can be used
to construct the reducible part of the amplitude with the following
recipe. Let us start from the one-photon two-scalar amplitude

D(1)(p, p′; ε′, k′) = eε′ · (p′ − p), (5.1.26)

which can be easily read off from (2.4.15). It yields the reducible part
of the one-photon one-graviton two-scalar amplitude by simply mul-
tiplying expressions (5.1.25) and (5.1.26), and using the replacement
rule

ε′αε′β −→ δαβ

k′2
, (5.1.27)
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k0, ε0

k, ε k′, ε′

Fig. 5.3: gγγ vertex given by (5.1.25).

which is the photon propagator in the Feynman gauge. By renaming
photon polarization and momentum as ε1 and k1, we thus get

D
(1,1)
red (p, p′; ε1, k1; ϵ, k0)

= eκ(p′ − p)µ
ε

µ
1(k1ϵk1) + (ε1ϵ)µk1 · k0 − kµ

1 (ε1ϵk1)− (k1ϵ)µε1 · k0

2k1 · k0
.

(5.1.28)

In the Feynman diagrams language, this corresponds to the contribu-
tion depicted as

p −p′

k0 k1

.

For efficiency purposes, we can rewrite the amplitude (5.1.28) in a
more compact form as

D
(1,1)
red (p, p′; ε1, k1; ϵ, k0) = D(1)(p, p′; υ1, k1 + k0), (5.1.29)

where, starting from (5.1.26), we have defined the replacements

ε
µ
1 → υ

µ
1 := κ

ε
µ
1(k1ϵk1) + (ε1ϵ)µk1 · k0 − kµ

1 (ε1ϵk1)− (k1ϵ)µε1 · k0

2k1 · k0
,

kµ
1 → kµ

1 + kµ
0 . (5.1.30)

It is worth noticing here that the top line of (5.1.30) is transversal
upon the replacement ε1 → k1. This property is directly linked to the
gauge transformation properties of the amplitude (5.1.25) and will be
accurately exploited later in the manuscript. The rules introduced in
(5.1.30) can be obviously extended to the n-photon two-scalar ampli-
tude constructed above in (2.4.15), which thus yields the following
reducible contribution

D
(n,1)
red (p, p′; ε1, k1, . . . , εn, kn; ϵ, k0)

=
n

∑
i=1

D(n)(p, p′; ε1, k1, . . . , υi, ki + k0, . . . εn, kn) . (5.1.31)
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Thus, the full tree-level amplitude with n photons, one graviton and
two scalars reads

D(n,1)(p, p′; ε1, k1, . . . , εn, kn; ϵ, k0) = D
(n,1)
irred (p, p′; ε1, k1, . . . ; ϵ, k0)

+
N

∑
l=1

D(n)(p, p′; ε1, k1, . . . , υl , kl + k0, . . . , εn, kn) , (5.1.32)

where D
(n,1)
irred is given by eq. (5.1.16) truncated on the external scalar

lines. For completeness, let us give the explicit expression for the
reducible part of the amplitude with two photons. Let us start from
the scalar Compton scattering amplitude, which can be easily obtained
from (2.4.15) and reads

D(2)(p, p′; ε1, k1, ε2, k2) = (−ie)2

{
2ε1 · ε2

−
(

ε1 · (p′ − p− k2)ε2 · (p′ − p + k1)

(p′ + k1)2 + m2 + (1↔ 2)
)}

. (5.1.33)

By applying the replacement rule given above, we get

D
(2,1)
red (p, p′; ε1, k1, ε2, k2; ϵ, k0) =

D(2)(p, p′; υ1, k1 + k0, ε2, k2) +D(2)(p, p′; ε1, k1, υ2, k2 + k0). (5.1.34)

Here, as an example, we report the value of the first contribution on
the right hand side of the formula above:

D(2)(p, p′; υ1, k1 + k0, ε2, k2)

=(−ie)2
{

2 υ1 · ε2 −
ε2 · (p′ − p + k1 + k0)

m2 + (p′ + k1 + k0)2 υ1 · (p′ − p− k2)

− ε2 · (p′ − p− k1 − k0)

m2 + (p′ + k2)2 υ1 · (p′ − p + k2)

}
. (5.1.35)

Below, in section 5.2, we will test the master formula (5.1.32) by check-
ing the on-shell transversality conditions in the photon lines and
graviton line. However, to conclude the present section, let us briefly
review a factorization property that links graviton-photon amplitudes
to photon amplitudes.

5.1.3 On-Shell Factorization Property for the Graviton Photoproduction
Amplitude

For a mixed scattering with one graviton and one photon, i.e. for
the graviton photoproduction process, the full amplitude involving
both the irreducible contributions (5.1.22) and the reducible contri-
bution (5.1.28), displays a very interesting factorization property in
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terms of the corresponding QED Compton amplitude. It can be easily
seen by adopting the on-shell decomposition

ϵµν → ϵµϵν , (5.1.36)

which yields,

D(1,1)(p, p′; ε1, k1; ϵ, k0) =

κe
k0 · k1

[
ϵ · p′ k0 · p− ϵ · pk0 · p′

] [ ε1 · p′ ϵ · p
p′ · k1

+
ε1 · p ϵ · p′

p′ · k0
+ ϵ · ε1

]
.

(5.1.37)

Using a more compact notation, we can write

D(1,1)(p, p′; ε1, k1; ϵ, k0) = H D(2)(p, p′; ϵ, k0, ε1, k1), (5.1.38)

where

H = − κ

2e
ϵ · p′ k0 · p− ϵ · pk0 · p′

k0 · k1
, (5.1.39)

and D(1,1)(p, p′; ε1, k1; ϵ, k0) and D(2)(p, p′; ϵ, k0, ε1, k1) are respectively
the on-shell versions of the graviton photoproduction amplitude and
of the scalar QED Compton scattering given in equation (5.1.33). This
factorization property was already studied in [114–118], and seems to
be universal for four-body amplitudes with massless gauge bosons.
However, beyond the four-particle level, such factorization property is
not expected to hold due to the lack of enough conservation laws [114].

5.2 ward identities and on-shell transversality

In this section we investigate the relevant Ward identities for the n-
photon one-graviton amplitudes in scalar QED, making use of the
formalism introduced in the previous section. The Ward identities are
relations among scattering amplitudes of a given theory, and their
existence ensures that the physical quantities preserve the symmetries
of the theory. In general, Ward identities are derived by considering
the infinitesimal transformation of a quantum field under a symmetry
transformation and then using the fact that the vacuum state is invari-
ant under this symmetry. This leads to relationships between vacuum
expectation values of operators in the theory, which constrains and
the form of the scattering amplitudes.

In the present discussion, the dressed propagator in (5.1.6) is covari-
ant upon U(1) gauge transformations and invariant under diffeomor-
phisms. The former is described by〈

ϕ(x′)ϕ̄(x)
〉

A,g
→

〈
ϕ̃(x′) ˜̄ϕ(x)

〉
Ã,g̃

= eie(α(x)−α(x′))
〈

ϕ(x′)ϕ̄(x)
〉

Ã,g̃
.

(5.2.1)
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Using that δAµ = ∂µα, the infinitesimal part of (5.2.1) becomes the
electromagnetic Ward identity generator[

∂
y
µ

δ

δAµ(y)
+ ie(δ(y− x)− δ(y− x′))

]〈
ϕ(x′)ϕ̄(x)

〉
A,g

= 0, (5.2.2)

which holds off-shell. In momentum space, it yields an infinite set of
Ward identities

D(n,1)(p, p′;−ik, k, ε1, k1, . . . ; ϵ, k0) =

− ie
[
D(n−1,1)(p + k, p′; ε1, k1, . . . ; ϵ, k0)−D(n−1,1)(p, p′ + k; ε1, k1, . . . )

]
(5.2.3)

which can be easily tested with the special cases singled out in sec-
tion 5.1.1. On the other hand, on the scalar mass-shell the contact
terms present in (5.2.2) do not have the correct pole structure and
drop out upon truncation, whereas the first term leads to the on-shell
transversality condition

D
(N,1)
irred (p, p′; ε1, k1, . . . ,−ikl , kl , . . . ; ϵ, k0) = 0 , (5.2.4)

which holds for any photon line. Moreover, the gauge invariance of
scalar QED, in flat as well as in curved space, ensures that the full
amplitude is transversal, i.e. the reducible part of the amplitude must
result separately transversal. Indeed, given that (5.1.30) vanishes upon
the replacement ε1 → k1, this is enough to prove the transversality of
the reducible part of the amplitude (5.1.2), as it can easily be checked
for the expression (5.1.35).

Under infinitesimal diffeomorphisms, xµ → xµ− ξµ(x), the dressed
propagator transforms as〈

ϕ̃(x′) ˜̄ϕ(x)
〉

Ã,g̃
=
〈

ϕ(x′)ϕ̄(x)
〉

A,g

+
∫

d4y ξµ(y)
(
δ(4)(y− x)∂µ + δ(4)(y− x′)∂′µ

)〈
ϕ(x′)ϕ̄(x)

〉
A,g

.

(5.2.5)

However, using the worldline representation (5.1.6), one can as well
get

〈
ϕ̃(x′) ˜̄ϕ(x)

〉
Ã,g̃

=
〈

ϕ(x′)ϕ̄(x)
〉

A,g
+
∫

d4y
[
2∇µξν(y)

δ

δgµν(y)

+
(
ξα∂α Aµ(y) + ∂µξα Aα(y)

) δ

δAµ(y)

]〈
ϕ(x′)ϕ̄(x)

〉
A,g

, (5.2.6)
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which, after some straightforward algebra and combining with expres-
sion (5.2.5), can be reduced to[
−∇y

µ
2gνα√

g
δ

δgµν(y)
+

1
√

g

(
Fαµ

δ

δAµ(y)

− δ(4)(y− x)∂α − δ(4)(y− x′)∂′α
)]〈

ϕ(x′)ϕ̄(x)
〉

A,g
= 0, (5.2.7)

which is the diffeomorphism Ward identity generator. Once again
there are contact terms which drop out on the scalar particle mass-
shell. The two left-over terms both contribute on-shell and thus the
irreducible part of the n-photon one-graviton amplitude is not, by
itself, transversal on the graviton line; rather it fulfills, even on-shell,
an inhomogeneous Ward identity. Recalling the definition for the field
strength tensor f µν

i = kµ
i εν

i − ε
µ
i kν

i for each photon leg, and an effective
photon polarization vector

ε̃
µ
i = κ f µν

i ξν, (5.2.8)

this identity can be written concisely as follows (the same identity
holds for the closed-loop case [119])

D
(n,1)
irred (p, p′; ε1, k1, . . . ; k0ξ, k0)

−
n

∑
i=1

D
(n,0)
irred (p, p′; ε1, k1, . . . , ε̃ i, ki + k0, . . . , εn, kn) = 0. (5.2.9)

Here we have written the transformation of the (transverse traceless)
polarization tensor as

ϵµν → ϵµν + k0µξν + k0νξµ, k0 · ξ = k2
0 = 0, (5.2.10)

and used k0ξ just a shortcut notation for the symmetrized product
of the two vectors. However, the full amplitude is expected to be
transversal on-shell, i.e.,

D(n,1)(p, p′; ε1, k1, . . . , εn, kn; k0ξ, k0) = 0 . (5.2.11)

Using the tree replacement rule (5.1.30), it can be seen quite easily how
this comes about: applying the transformation (5.2.10) to υ

µ
i , the result

can be written as

υ
µ
i → −ε̃

µ
i + κ

k0 · fi · ξ
2ki · k0

(k0 + ki)
µ . (5.2.12)

The second term in brackets will drop out when inserted into the
photon amplitude because of the transversality in the photon polar-
izations. The first one can be interpreted by combining it with the



5.3 final remarks 81

definition of the reducible contributions given in (5.1.31). In particular,
we obtain

D
(n,1)
red (p, p′; ε1, k1, . . . , εn, kn; k0ξ, k0)

=
n

∑
i=1

D
(n,0)
irred (p, p′; ε1, k1, . . . ,−ε̃ i, ki + k0, . . . εn, kn). (5.2.13)

Exploiting the linearity of the amplitude with respect to the photon
polarizations, it is easy now to convince ourselves that this contribution
corresponds exactly to the second term in (5.2.9), and (5.2.11) is verified
on the spot.

5.3 final remarks

In this chapter we have described a novel worldline approach to the
computation of the tree level scattering amplitudes associated to a
scalar line coupled to electromagnetism and gravity. In particular,
we have introduced a convenient parametrization for the graviton
polarization and a replacement rule, which made it simple to calculate
full amplitudes involving any number of photons and a single gravi-
ton. With this method, we have confirmed the on-shell factorization
property for the one-graviton one-photon amplitude and the on-shell
transversality of amplitudes with up to two photons and one graviton.

In the following chapter, we will make use of our novel technique to
compute the one-loop correction to the graviton-scalar vertex in QED.
Our worldline approach is off-shell, so the correction to the vertex can
be calculated by examining the two-photon, one-graviton amplitude
and sewing the photons together. To ensure a completely off-shell
result for the vertex, we will need to slightly revisit the substitution
rule in (5.1.30).





6
O N E - L O O P R A D I AT I V E C O R R E C T I O N T O T H E
G R AV I T O N V E RT E X I N S C A L A R Q E D

In this chapter we compute the one-loop QED radiative correction to
the graviton coupled to a scalar particle in any covariant gauge. We
use the worldline formalism to analyze the scattering amplitude of
any number of off-shell photons and one graviton that are connected
to a scalar propagator, focusing on the master formula derived in the
previous chapter. In particular, to compute the one-loop correction
to the graviton-scalar vertex (referred to as the gss vertex) in QED,
we first re-derive the off-shell amplitude for two-photon and one-
graviton interactions, then use the sewing procedure to calculate the
radiative correction. There are three irreducible diagrams and two
reducible ones. The first set of diagrams can be computed directly
from the master formula following the sewing procedure, while the
remaining diagrams can be derived using the previously obtained tree
replacement rules.

6.1 the graviton goes in the off-shell realm

In chapter 5 we have studied the inclusion of a single graviton within
the n-photon scalar propagator in the context of the worldline formal-
ism. We have shown that in this approach the irreducible contributions
are given directly by the master formula (5.1.16) and a nontrivial new
replacement rule was introduced in (5.1.30) for the inclusion of the re-
ducible contributions from lower irreducible pure photonic amplitudes.
Here we want to make use of some properties of the one-graviton
n-photon master formula for the scalar propagator. In particular we
focus our analysis on the one-graviton two-photon amplitude, whose
computation has been sketched in appendix A. Since our formalism
holds off-shell, the idea is to sew the two external photons together
(in any covariant gauge) and compute the one-loop scalar QED correc-
tion to the graviton-matter (spinless) vertex. Based on our knowledge,
this has been studied only for the fermion propagator in [120] and
repeated in [121]. As a starting point, we reconsider the the master
formula (5.1.16), that we report again here for convenience

D(n,1)(p, p′; ε1, k1, . . . , εn, kn; ϵ, k0) = (−ie)n
(
−κ

4

) ∫ ∞

0
dTe−T(m2+p′2)×

n

∏
l=0

∫ T

0
dτle

(p′−p)·∑n
l=0(−klτl+iε l)+∑n

l,l′=0

(
kl ·kl′∆l−l′−2iε l ·kl′ ∆̇l−l′+ε l ·ε l′ ∆̈l−l′

)∣∣∣
m.l.

.

(6.1.1)

83
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We remark the fact that this formula holds off-shell and therefore can
be used to construct higher order corrections, as it will be discussed
in what follows. The elegance of this key formula lies in its ability to
merge all (n + 1)! arrangements (including the graviton) which may
not appear very relevant at the tree-level, but it becomes evident in
higher loops where it results in an integral representation of nontrivial
sums of diagrams, as seen in the two- and three-loop corrections to the
Euler-Heisenberg Lagrangian [122–124]. As it has been already pointed
out in the previous chapter and in detail in [108], the master formula
above describes only the irreducible part of the n-photon one-graviton
scalar propagator. Previous chapter efficiently accounted for reducible
contributions to the amplitude through the use of replacement rules,
as defined in equation (5.1.30). These rules have to be applied directly
to the n-photon scalar propagator, for which the formula (2.4.13)
may be used —see (5.1.31) for the formal expression of the reducible
contributions to the full amplitude.

Before we demonstrate how to obtain the radiative corrections to
the gss vertex using our method, we need to make a few slight but
crucial adjustments to the rules outlined in (5.1.30). Indeed, the rules
in question were developed based on the tree-level amplitude of two
photons and one on-shell graviton, as outlined in equation (5.1.25).
The objective now is to calculate the radiative corrections to the gss
vertex, but this time with the graviton being off-shell. Specifically,
we begin again with the connection between the graviton and the
electromagnetic energy-momentum tensor

V[A, h] =
κ

2

∫
d4xhµνTµν =

κ

2

∫
d4x hµν

(
FµαFν

α −
1
4

δµνFαβFαβ

)
.

(6.1.2)

Now we require the two-photon one-graviton amplitude in (5.1.25) to
be modified to1

Γgγγ[ε, k; ε′, k′; ϵ, k0]

= κ
[
(kϵ(k + k0))ε · ε′ − (εϵ(k + k0))k · ε′ + (εϵε′)k · (k + k0)

− (kϵε′)ε · (k + k0)
]
− κ

2
tr(ϵ)

[
k · (k + k0) ε · ε′ − ε · (k + k0) ε′ · k

]
,

(6.1.3)

where only the energy-momentum conservation k′ = −(k + k0) has
been used, while all the external photon and graviton lines have been
kept off-shell. As we have seen in section 5.1.2, the reducible part of the
the n-photon one-graviton amplitude is obtained by sewing one of the
photons in the above gγγ vertex in all possible way to the photons in
the master formula (2.4.13). This fact has lead us to introduce the afore-
mentioned replacement rule, which effectively handles all reducible

1 We are using a shorthand notation for the contraction of the graviton polarization
tensor with vectors, specifically a · ϵ · b is denoted as (aϵb).
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contributions for the n-photon one-graviton amplitude. Now our goal
is to create a new replacement rule which will allow us to describe
off-shell external photons and gravitons. However, the generalization
in (6.1.3) is just the first step in our construction process. Indeed, it
should also be noted that the replacement rule in (5.1.30) was obtained
by sewing the photons through the propagator in the Feynman gauge,
as seen in (5.1.27). As we are now working on calculating the one-loop
correction to the gss vertex in a general covariant gauge, we will make
use of the photon propagator in the form

ε′µε′ν → δµν

k′2
− (1− ξ)

k′µk′ν

k′4
, (6.1.4)

where ξ is the gauge parameter, and ξ = 0 and ξ = 1 correspond to
Landau and Feynman gauges respectively. Following the same pro-
cedure outlined in the previous chapter, we redefine the replacement
rule to be applied to the pure QED amplitude. Specifically, the effective
replacements for the momentum and polarization of the i-th photon,
where the graviton is supposed to sit on, are now given by:

ε
µ
i → ῡ

µ
i := κ

[
εα

i (kiϵ(ki + k0))− kα
i (ε iϵ(ki + k0)) + (ε iϵ)

αki · (ki + k0)

− (kiϵ)
αε i · (ki + k0)−

1
2

tr (ϵ)
(

ki · (ki + k0)ε
α
i − ε i · (k + k0)kα

i

)]
×
( δ

µ
α

(ki + k0)2 − (1− ξ)
(ki + k0)µ(ki + k0)α

(ki + k0)4

)
,

kµ
i → kµ

i + kµ
0 . (6.1.5)

where the effective polarization ῡ
µ
i is different from the one defined in

(5.1.30), in order to take into account the off-shellness of the external
graviton. However, this is not the end of the story, as it is easy to
figure out that the above ῡ

µ
i has some interesting features when it is

contracted with the gauge dependent part of the photon propagator.
In particular, we can easily check that

(ki + k0)α

[
εα

i (kiϵ(ki + k0))− kα
i (ε iϵ(ki + k0)) + (ε iϵ)

αki · (ki + k0)

− (kiϵ)
αε i · (ki + k0)−

1
2

tr (ϵ)
(

ki · (ki + k0)ε
α
i − ε i · (k + k0)kα

i

)]
= 0.

(6.1.6)

This means that the whole gauge dependent part in the replacement
(6.1.5) is identically vanishing. This fact should not be a surprise at all,
as can be easily understood looking at (6.1.2). Indeed, the gγγ vertex
is formulated in terms of products of field strength tensors. These
are manifestly gauge invariant quantities, thus gauge invariance on
the photon lines is guaranteed at the level of the gγγ vertex. We have
briefly mentioned this property in section 5.2, where transversality
of the scalar propagator dressed with n photons and one graviton
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has been investigated. In summary, it is possible to set the variable
ξ = 1 within the effective polarizations for the reducible contributions
without affecting the overall results, and redefine

ῡ
µ
i =

κ

(ki + k0)2

[
ε

µ
i (kiϵ(ki + k0))− kµ

i (ε iϵ(ki + k0)) + (ε iϵ)
µki · (ki + k0)

− (kiϵ)
µε i · (ki + k0)−

1
2

tr (ϵ)
(

ki · (ki + k0)ε
µ
i − ε i · (k + k0)k

µ
i

)]
.

(6.1.7)

Similarly, the isomorphism invariance also applies to the other photon
leg in the expression above, as it can easily be seen that ῡ

µ
i is vanishing

when ε i is changed to ki.
Now we have all the ingredients to write down the final formula

for the n-photon one-graviton amplitude:

D(n,1)(p, p′; ε1, k1, . . . , εn, kn; ϵ, k0) = D
(n,1)
irred (p, p′; ε1, k1, . . . ; ϵ, k0)

+
N

∑
l=1

D(n)(p, p′; ε1, k1, . . . , ῡl , kl + k0, . . . , εn, kn), (6.1.8)

which, in contrast to (5.1.32), holds fully off-shell for all external
photons and the graviton. Now we have all the ingredients to focus
our attention on the two-photon one-graviton dressed propagator and
use it properly for the one-loop QED correction to the graviton-matter
coupling.

6.2 one-loop correction to the graviton-matter vertex

As mentioned in the previous, our objective is to compute the one-loop
QED correction to the gss vertex by utilizing the fully off-shell two-
photon one-graviton amplitude D(2,1), derived from (6.1.8). The details
of such computation have been already discussed in appendix A. For
convenience, we report here the master formula for the construction
of the irreducible part of the amplitude:

D
(2,1)
irred(p, p′; . . . ; ϵ, k0) = (−ie)2

(
−κ

4

) ∫ ∞

0
dT e−T(m2+p′2)

2

∏
i=0

∫ T

0
dτi

× e(p′−p)·(−k0τ0−k1τ1−k2τ2+iε0+iε1+iε2) ek0·k1|τ0−τ1|+k0·k2|τ0−τ2|+k1·k2|τ1−τ2|

× ei(ε1·k0−ε0·k1)sgn(τ0−τ1)+i(ε2·k0−ε0·k2)sgn(τ0−τ2)+i(ε2·k1−ε1·k2)sgn(τ1−τ2)

× e2
[

ε0·ε1δ(τ0−τ1)+ε0·ε2δ(τ0−τ2)+ε1·ε2δ(τ1−τ2)
]∣∣∣

m.l.
. (6.2.1)

To keep track of the various contributions to the amplitude, we find it
useful to consider the number of delta functions present. As a useful
organizational tool, we adopt the notation of Qi to denote2 the portion

2 Here we don’t follow the notation in appendix A: Qi are the contributions to the
integrand, while Ei are the contribution to the amplitude after integration.
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of the integrand that contains i delta functions. Accordingly, we define
the multilinear expansion of (6.2.1) as

Q(2,1) = Q
(2,1)
0 + Q

(2,1)
1 + Q

(2,1)
2 . (6.2.2)

The irreducible contribution to the two-photon one-graviton amplitude
can now be expressed as

D
(2,1)
irred(p, p′; k1, ε1, k2, ε2; k0, ϵ) = (−ie)2

(
−κ

4

) ∫ ∞

0
dT e−T(m2+p′2)

×
∫ T

0
dτ0

∫ T

0
dτ1

∫ T

0
dτ2 e(p′−p)·(−k0τ0−k1τ1−k2τ2)

× ek0·k1|τ0−τ1|+k0·k2|τ0−τ2|+k1·k2|τ1−τ2|
(
Q
(2,1)
0 + Q

(2,1)
1 + Q

(2,1)
2

)
.

(6.2.3)

By making use of the parametrization of the graviton polarization
tensor ϵµν and its connection to ε0µ as outlined in (5.1.13)-(5.1.14), from
(6.2.1) we can readily deduce

Q
(2,1)
0 =ε1 ·

(
p′ − p + k0σ01 − k2σ12

)
ε2 ·
(

p′ − p + k0σ02 + k1σ12
)

×
(

p′ − p− k1σ01 − k2σ02
)
· ϵ ·

(
p′ − p− k1σ01 − k2σ02

)
,

Q
(2,1)
1 =

−4 ε2 ·
(

p′ − p + k0σ02 + k1σ12
)

ε1 · ϵ ·
(

p′ − p− k1σ01 − k2σ02
)

δ01

−4 ε1 ·
(

p′ − p + k0σ01 − k2σ12
)

ε2 · ϵ ·
(

p′ − p− k1σ01 − k2σ02
)

δ02

−2
(

p′ − p− k1σ01 − k2σ02
)
· ϵ ·

(
p′ − p− k1σ01 − k2σ02

)
ε1 · ε2δ12,

Q
(2,1)
2 =8 ε1 · ϵ · ε2 δ01δ02. (6.2.4)

where we have introduced the compact notation σij = sgn(τi − τj) and
δij = δ(τi − τj). By evaluating the parameter integrals for different
orderings of τ0, τ1 and τ2 and truncating the external scalar lines,
we easily get the expression for the irreducible amplitude presented
in (5.1.23) and computed in detail in (A10). However, for the future
computations, we find it more beneficial to make use of the unin-
tegrated form of the amplitude, and we will proceed from (6.2.4).
As pointed out earlier in this chapter, the reducible contribution to
the two-photon one-graviton amplitude is obtained from the pure
off-shell two-photon amplitude where we apply suitable replacement
rules (6.1.7). It is convenient to report here the expression of the pure
two-photon amplitude as obtained from (2.4.13) by fixing n = 2, i.e.

D(2)(p, p′; k1, ε1, k2, ε2) =

(−ie)2
∫ ∞

0
dT e−T(m2+p′2)

∫ T

0
dτ1

∫ T

0
dτ2 e(p′−p)·(−k1τ1−k2τ2)

× ek1·k2|τ1−τ2|+iε1·(p′−p−k2sgn(τ1−τ2))+iε2·(p′−p+k1sgn(τ1−τ2))e2ε1·ε2δ(τ1−τ2)
∣∣∣
m.l.

.

(6.2.5)



88 one-loop radiative correction to the graviton vertex in scalar qed

p p′

k0
(a)

p p′

k0
(b)

p p′

k0
(c)

p p′

k0

(d)

p p′

k0

(e)

Fig. 6.1: Feynman diagrams contributing to the one-loop correction to the
gss vertex after sewing two external photons from D(2,1). The diagrams (a),
(b) and (c) come from the irreducible part of D(2,1), the last two (d) and (e)
from the reducible one. All momenta are incoming by convention.

We establish the multilinear expansion Q(2) by separating terms with
either zero or one delta function, Q(2)

0 and Q
(2)
1 respectively. The corre-

sponding values can easily be computed as

Q
(2)
0 =− ε1 ·

(
p′ − p− k2s12

)
ε2 ·
(

p′ − p + k1s12
)

Q
(2)
1 =2 ε1 · ε2 δ12, (6.2.6)

The overall result is

D(2)(p, p′; k1, ε1, k2, ε2) = (−ie)2
∫ ∞

0
dT e−T(m2+p′2)

∫ T

0
dτ1

∫ T

0
dτ2

× e(p′−p)·(−k1τ1−k2τ2)+k1·k2|τ1−τ2|
(
Q
(2)
0 + Q

(2)
1

)
. (6.2.7)

The reducible part of the two-photon one-graviton amplitude is ob-
tained from the above expression by applying the replacement rules in
(6.1.7). In the computation of a scattering amplitude, such replacement
rules can be further simplified by imposing on-shell conditions for
the graviton (ϵµ

µ = kµ
0 ϵµν = 0). Performing the parameter integrals

in the different orderings for τ1 and τ2 and truncating the external
scalar lines, one gets the reducible part of the two-photon one-graviton
amplitude as expressed in (5.1.35). At the present time, we prefer to
keep the amplitude in its unintegrated form, and use the replacement
rules (6.1.7) to maintain the off-shell nature of the result.

We have now obtained all the tools required to calculate the radia-
tive correction to the gss vertex with efficiency. To move forward, it is
important to identify all the possible diagrams that can be constructed
by combining external photons within D(2,1). In the computation of
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p p′

k0k2 k1

sewing
p p′

k0

Fig. 6.2: Diagram (a) is obtained after sewing two external photons from the
part of the integrand of D(2,1) with zero delta functions involved.

the parameter integrals, we consider the special ordering τ1 ≥ τ0 ≥ τ2:
as the photons have to be combined together, this ordering ensures to
avoid redundancies in the computation of the loop-correction. By ap-
plying Feynman rules and straightforward combinatorial arguments,
we identify five unique diagrams that play a role in the loop-correction.
These diagrams are depicted in figure 6.1. The first three diagrams (a),
(b) and (c) come from the irreducible part of D(2,1), while and the last
two (d) and (e) from the reducible one, after the sewing procedure
takes place.

In the following portion of this section, we will outline the correc-
tions associated to the different diagrams in a general covariant gauge
of the internal photon, by identifying the corresponding contributions
inside (6.2.3)-(6.2.7).

6.2.1 Diagram (a)

Diagram (a) represents the first contribution that we can obtain by
sewing two photons in the irreducible part of the amplitude D(2,1),
once the ordering of the legs is fixed. This diagram comes from the
Q
(2,1)
0 part in (6.2.4), i.e. the part of the integrand that involves zero

delta functions. Pictorially, we can represent the sewing mechanism
that brings to the construction of diagram (a) as in figure 6.2. It is easy
to convince ourselves that the diagram on the left side comes from
the integrand that involves zero delta functions in D(2,1), and where
the ordering τ1 ≥ τ0 ≥ τ2 of the external legs has been fixed. More in
detail, we can read off this contribution from (6.2.3):

Da(p, p′; ε1, k1, ε2, k2; ϵ, k0) = (−ie)2
(
−κ

4

) ∫ ∞

0
dTe−T(m2+p′2)

∫ T

0
dτ1

×
∫ τ1

0
dτ0

∫ τ0

0
dτ2 e−τ0k0·l0−τ1k1·l1−τ2k2·l2 (l0ϵl0)(ε1 · l1) (ε2 · l2), (6.2.8)

where for convenience we have introduced the new quantities

l0 =p′ − p + k1 − k2 ,

l1 =p′ − p− k0 − k2 ,



90 one-loop radiative correction to the graviton vertex in scalar qed

l2 =p′ − p + k0 + k1. (6.2.9)

It is now time to apply the sewing procedure on the external photons
in (6.2.8). This process is inspired by the method used in [81] and can
be summarized as:

1. Sew the two external photons together using the photon propa-
gator in an arbitrary covariant gauge. Making use of (6.1.4), we
replace the polarizations ε1 and ε2 with

ε
µ
1εν

2 −→
δµν

ℓ2 − (1− ξ)
ℓµℓν

ℓ4 , (6.2.10)

where ℓµ has to be understood as the momentum running inside
the loop.

2. Replace the momenta kµ
1 and kµ

2 of the external photons with

kµ
1 −→ ℓµ, kµ

2 −→ −ℓµ. (6.2.11)

3. Include the D-dimensional integral over the loop momentum ℓ,
namely ∫ dDℓ

(2π)D . (6.2.12)

Following the sewing procedure outlined above, we obtain the contri-
bution of the diagram (a) from (6.2.8) as

Γ̃a(p, p′; ϵ) = −κ

4
(−ie)2

∫ ∞

0
dTe−T(m2+p′2)

∫ dDℓ

(2π)D

∫ T

0
dτ1

∫ τ1

0
dτ0

×
∫ τ0

0
dτ2 (l0 ϵ l0)l

µ
1 lν

2

(
δµν

ℓ2 −
(1− ξ)ℓµℓν

ℓ4

)
e−τ0k0·l0−τ1ℓ·l1+τ2ℓ·l2 ,

(6.2.13)

where the notation Γ̃a(p, p′; ϵ) indicates the untruncated3 result for
diagram (a). Note that the sewing procedure is responsible for the
modification of the coefficients (6.2.9) to

l0 =p′ − p + 2ℓ ,

l1 =p′ − p− k0 + ℓ ,

l2 =p′ − p + k0 + ℓ . (6.2.14)

We focus now our attention on the gauge-independent part of (6.2.13),
or equivalently the Feynman gauge result where ξ = 1 is fixed. The
calculation of the vertex correction for diagram (a) is done as follows:
first, we perform the integrals over the parameters τi, then we examine
the product of the coefficients l0, l1, and l2 and express it in terms

3 The integral (6.2.13) contains the propagators of the external scalars which can be
truncated by multiplying by their respective inverse. These propagators can be easily
regained if the vertex is part of a larger diagram.
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of different powers of the loop momentum ℓ —different powers of
ℓ in the numerator correspond to different master integrals. After
truncating the external scalars, diagram (a) in the Feynman gauge
corresponds to

Γµν
a,Feyn(p, p′; ϵ) = (m2 + p′2)(m2 + p2)Γ̃µν

a,Feyn(p, p′; ϵ), (6.2.15)

where

Γµν
a,Feyn(p, p′; ϵ) =

e2κ

4

{
−4p′ · p qµqν J(0)[p, p′] +

(
2 qρqµ qν − 16p′ · p qµ δν

ρ

)
J(1)ρ[p, p′]

+
(
8qρqµ − 16p′ · pδ

µ
ρ

)
J(2)ρν[p, p′] + 8qρ J(3)ρµν[p, p′] + qµqνK(0)[p, p′]

+ 4 qµK(1)ν[p, p′] + 4K(2)µν[p, p′]
}

. (6.2.16)

In the above expression, the graviton polarization tensor ϵµν has been
removed and the quantity qµ = p′µ − pµ has been introduced. The
shorthand notations J(i) and K(i) are used for Feynman integrals,
the full expressions for which are given in appendix C. We want to
emphasize that the vertex Γµν

a,Feyn has to be symmetric in the indices µ

and ν, as expected after the contraction with the external polarization
tensor ϵµν. Thus, where not manifest, symmetrization is implicit in
(6.2.16). This property is assumed to hold also for the diagrams that
will be computed in the following of the section.

In a complete analogous way, we can consider the gauge dependent
part of (6.2.13). Taking inspiration from a technique used in [81],
we point out that the gauge-dependent part of (6.2.8) can be simply
rewritten as a second derivative over the exponential, i.e.

(ξ − 1)(l0 ϵ l0)
l1 · ℓ l2 · ℓ

ℓ4 e−τ0k0·l0−τ1ℓ·l1+τ2ℓ·l2 =

− (ξ − 1)(l0 ϵ l0)
1
ℓ4

∂2

∂τ1∂τ2
e−τ0k0·l0−τ1ℓ·l1+τ2ℓ·l2 . (6.2.17)

This suggests that the gauge-dependent part can be easily obtained
by performing the calculation in the Feynman gauge, which in turn
reduces the number of independent integrals required for the compu-
tation of the one-loop correction to the scalar QED vertex (see [81] for
more details about the calculation). Using this prescription to solve
the parameter integrals in terms of total derivatives, we compute the
truncated gauge dependent contribution to be

Γµν
a,ξ(p, p′) =

e2κ

4
(1− ξ)

{
(m2 + p′2)

(
qµqνH(0)[p′] + 4 qνH(1)µ[p′] + 4H(2)µν[p′]

)
+ (m2 + p2)

[
qµqνH(0)[−p] + 4 qνH(1)µ[−p] + 4H(2)µν[−p]

]}
− (m2 + p′2)(m2 + p2)

(
qµqνL(0) + 4 qµL(1)ν + 4 L(2)µν

)
, (6.2.18)
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p p′

k0 k2 k1

sewing
p p′

k0

Fig. 6.3: Diagram (b) is obtained after sewing two external photons from the
part of the integrand of D(2,1) proportional to δ(τ0 − τ2).

where again we remark that the integrals of type H(i) and L(i) are
listed in appendix C for convenience. Combining the expressions
(6.2.16)-(6.2.18), we obtain the diagram (a) in any covariant gauge to
be

Γµν
a (p, p′) = Γµν

a, Feyn(p, p′) + Γµν
a, ξ(p, p′). (6.2.19)

6.2.2 Diagrams (b)− (c)

The next contribution we want to examine is the diagram (b) in figure
6.1. It is obtained from the part of D(2,1) that includes a factor of
δ(τ0 − τ2), as pictorially represented in figure 6.3. This diagram can
be thought of as representing the merging of one photon and the
graviton into the scalar line at the same point. At the tree level, this
contribution is represented by the following expression

Db[p, p′; k1, ε1; k2, ε2; k0, ϵ] = −(κe2)2
∫ ∞

0
dT e−T(m2+p′2)

×
∫ T

0
dτ1

∫ τ1

0
dτ0 e−τ0(k0+k2)·(l0+k2)−τ1k1·l1 (ε2 · ϵ · (l0 + k2)) ε1 · l1,

(6.2.20)

where l0 and l1 can be read off from (6.2.9) and

l0 + k2 = p′ − p + k1. (6.2.21)

In (6.2.20) again the delta function δ(τ0 − τ2) has been used to elim-
inate the integral over the parameter τ2. Now we apply the sewing
procedure on the external photons, as outlined in the previous com-
putation. After sewing, diagram (b) reads as

Γ̃b(p, p′; ϵ) = −e2κ
∫ ∞

0
dTe−T(m2+p2)

∫ dDℓ

(2π)D

∫ T

0
dτ1

∫ τ1

0
dτ0

× e−τ0(k0−ℓ)·(p′−p+ℓ)−τ1ℓ·l1
(
ϵ · (p′ − p + ℓ)

)µ lν
1

(δµν

ℓ2 −
(1− ξ)ℓµℓν

ℓ4

)
,

(6.2.22)
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where the coefficients take now the values (6.2.14). Upon evaluating the
integral of the parameters, and separating the integrand into different
powers of the loop momentum ℓ, the Feynman gauge diagram (b) can
be expressed as

Γµν
b, Feyn(p, p′) =

− (e2κ)
(

2p′µqν I(0)[p′] + (2p′µ + qµ)I(1)ν[p′] + I(2)µν[p′]
)

, (6.2.23)

The above expression has had the graviton polarization tensor ϵ re-
moved and the truncation of the scalar lines has been carried out. We
have defined a new Feynman integral, I(i), which can be found in
appendix C.

The calculation of the gauge-dependent portion in (6.2.22) is done
in a similar manner to that of diagram (a). Again, we notice that
the gauge dependent part can be (partially) rewritten in terms of
derivatives as

(ξ − 1)
(
ℓϵ(p′ − p + ℓ)

) ℓ · l1
ℓ4 e−τ0(k0−ℓ)·(p′−p+ℓ)−τ1ℓ·l1 =

− (ξ − 1)
(
ℓϵ(p′ − p + ℓ)

) 1
ℓ4

∂

∂τ1
e−τ0(k0−ℓ)·(p′−p+ℓ)−τ1ℓ·l1 . (6.2.24)

By taking advantage of this property, the gauge-dependent part (after
truncation) can be computed as

Γµν
b,ξ(p, p′) = −(e2κ)(1− ξ)(m2 + p′2)

(
qνH(1)µ[p′] + H(2)µν[p′]

)
.

(6.2.25)
Combining (6.2.23) and (6.2.25), we obtain the full expression of dia-
gram (b) as

Γµν
b (p, p′) = Γµν

b, Feyn(p, p′) + Γµν
b, ξ(p, p′). (6.2.26)

It is now time to focus on diagram (c). However, It is easy to convince
ourselves that we do not need to calculate the diagram from scratch.
Indeed, it is clear from the diagrammatic representation in figure 6.1
that diagrams (b) and (c) are linked by Bose symmetry. In particular,
we can obtain diagram (c) from diagram (b) simply by exchanging

p ←→ p′. (6.2.27)

In addition, we can also reverse the direction of the momentum ℓ that
is flowing inside the loop through the replacement

ℓ −→ −ℓ. (6.2.28)

This is useful in order to be consistent with the direction of the loop
momentum. Note that the transformation (6.2.28) leaves the measure
of the loop integral invariant, so the overall sign of the integrals only
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depends on the degree of ℓ in the numerator 4. In detail, the vertex
correction associated to diagram (c) reads in the Feynman gauge as

Γµν
c, Feyn(p, p′) =

− (e2κ)
(
−2pµqν I(0)[−p] + (−2pµ + qµ)I(1)ν[−p] + I(2)µν[−p]

)
,

(6.2.29)

while the gauge dependent part is

Γµν
c,ξ(p, p′) = −(e2κ)(1− ξ)(m2 + p2)

(
qνH(1)µ[−p] + H(2)µν[−p]

)
.

(6.2.30)
The combination of the two above contributions gives the full expres-
sion of the correction associated to diagram (c), that is

Γµν
c (p, p′) = Γµν

c, Feyn(p, p′) + Γµν
c, ξ(p, p′). (6.2.31)

6.2.3 Diagram (d)

In addition to the diagrams (a), (b), and (c) previously mentioned,
there are two more diagrams that contribute to the one-loop QED
correction to the gss vertex. These are diagrams (d) and (e) shown in
figure 6.1, which come from reducible tree-level amplitudes after the
sewing process. In the rest of this section, we will face the computation
of these diagrams in the Feynman gauge. As previously mentioned,
the effective polarizations constructed with the gγγ vertex in (6.1.2)
are not affected by gauge transformations. This implies that diagrams
(d) and (e) are gauge-invariant, thus they can be calculated in the
Feynman gauge without any loss of generality for our purposes.

We start our analysis by considering diagram (d), which originates
from the reducible part of the amplitude for two photons and one
graviton as illustrated in Figure 6.4. In particular, by fixing the time
ordering τ1 > τ2 in the pure two-photon amplitude in (6.2.1) and using
the replacement rules described in (6.1.7), the tree-level contribution
is given by

Dd[p, p′; k1, ε1; k2, ε2; k0, ϵ] = (κe2)
∫ ∞

0
dTe−T(m2+p′2)

×
∫ T

0
dτ1

∫ τ1

0
dτ2 e−τ1(k1+k0)·(l0−k1)−τ2k2·l2 (ε2 · l2) ῡ1 · (l0 − k1),

(6.2.32)

where the off-shell effective polarization ῡ
µ
i is defined in (6.1.7), and

the coefficients li are the same of (6.2.9). It is convenient now to modify
the expression of the effective polarization ῡ

µ
i to

ῡ
µ
i ≡

κ

(ki + k0)2 ε iν ῡ
µν
i , (6.2.33)

4 It is easy to check that the net effect of the transformations (6.2.27)-(6.2.28) corresponds
to the replacement p ↔ −p′.
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p p′

k2 k0 k1

sewing

p p′

k0

Fig. 6.4: Diagram (d) is obtained by sewing the external photons from the
reducible diagram on the left, which is included in D(2,1). This diagram is
derived from the pure photon amplitude D(2) using the standard replacement
rules.

where the polarization ε i and the propagator associated with the
internal edge have been removed from ῡ

µ
i in order to make the sewing

procedure more efficient. In particular, the rank-two vertex ῡ
µν
i reads

ῡ
µν
i = kiϵ(ki + k0)δ

µν + ϵµνki · (ki + k0)− ((ki + k0)ϵ)
νkµ

i

− (kiϵ)
µ(ki + k0)

ν − tr(ϵ)
2
(
ki · (ki + k0)δ

µν − kµ
i (ki + k0)

ν
)

. (6.2.34)

Following the sewing procedure and performing the parameter in-
tegrals contained in (6.2.32), diagram (d) is given by the following
expression

Γd,Feyn = (κe2)
∫ dDℓ

(2π)D

(p′ − p + ℓ)µῡ
µν
1 (p′ − p + ℓ+ k0)ν

ℓ2(ℓ+ k0)2(m2 + (p− ℓ)2)
, (6.2.35)

where the photon propagator in the Feynman gauge ε
µ
1εν

2 → δµν/ℓ2

has been used to connect the two external photons. After the sewing
procedure, it is worth mentioning that the effective vertex ῡ

µν
1 now has

been changed to

ῡ
µν
1 = ℓ ϵ (ℓ+ k0)δ

µν + ϵµνℓ · (ℓ+ k0)− ℓµ((ℓ+ k0) ϵ)ν

− (ℓ ϵ)µ(ℓ+ k0)
ν − tr(ϵ)

2
(ℓ · (ℓ+ k0)δ

µν − ℓµ(ℓ+ k0)
ν) . (6.2.36)

Combining the gauge invariance of the gγγ vertex with the expression
above, it is easy to notice that ℓνῡ

µν
1 = (ℓ+ k0)µῡ

µν
1 = 0. This allows

us to simplify the expression of diagram (d) to

Γd,Feyn = −4 (κe2)
∫ dDℓ

(2π)D

p′µῡ
µν
1 pν

ℓ2(ℓ+ k0)2(m2 + (p− ℓ)2)
. (6.2.37)

Finally, we can strip off the graviton polarization tensor from the
expression of the vertex, and, after organizing the terms inside the
loop integral in terms of powers of the loop momentum, we obtain
diagram (d) to be

Γµν
d,Feyn[p, p′; k0] = Γµν

d,1 + Γµν
d,2 + Γµν

d,3 , (6.2.38)
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where for convenience in the notation we have introduced the three
coefficients

Γµν
d,1 = −4 (κe2)

(
p′ · p

[
M(2)µν[k0, p] + M(1)µ[k0, p] kν

0

]
+ p′µ pν

[
N(0)[k0, p] + M(1)ρ[k0, p] k0 ρ

])
(6.2.39)

Γµν
d,2 = 4 (κe2)

(
p′ρ pµ

[
M(2)ρν[k0, p] + M(1)ρ[k0, p] kν

0

]
+ p′µ pρ

[
M(2)ρν[k0, p] + M(1)µ[k0, p] kρ

0

])
(6.2.40)

Γµν
d,3 = 4 (κe2)

δµν

2

(
p′ · p

[
N(0)[k0, p] + M(1)ρ[k0, p]k0 ρ

]
− p′ρ pσ

[
M(2)ρσ[k0, p] + M(1)ρ[k0, p]kσ

0

])
. (6.2.41)

The complete expressions of the different loop integrals has been
relegated as usual to appendix C.

6.2.4 Diagram (e)

The last contribution we have to compute to finish our analysis about
the one-loop correction to the gss vertex in scalar QED corresponds to
the diagram (e) contained in 6.1. This diagram can be obtained from
the part of the pure photon amplitude D(2) in (6.2.1) proportional
to δ(τ1 − τ2). In other words this corresponds to the diagram where
the two photons merge into the scalar line at same point (seagull
vertex). The graviton is inserted using the well known replacement
rule (6.1.7) for the construction of reducible contributions. At tree-level
this diagram is given by

De[p, p′; k1, ε1; k2, ε2; k0, ϵ] =

− 2(κe2)
∫ ∞

0
dTe−T(m2+p2)

∫ T

0
dτ1 e−(p−p′)·(k1+k2+k0)τ1

ε2µῡ
µν
1 ε1ν

(k1 + k0)2 ,

(6.2.42)

where the prescription in (6.2.33) has been used for the effective
polarization. Finally, sewing the two photons using the Feynman gauge
through ε

µ
1εν

2 → δµν/ℓ2, we can strip off the graviton polarization
tensor and organize the integrand in terms of powers of the loop
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p p′

k0 k1 k2

sewing

p p′

k0

Fig. 6.5: Diagram (e) is obtained after sewing the two external photons in
the part of the pure photon D(2) where the photons are attached in same
point, i.e. the diagram associated to a seagull vertex. The graviton is inserted
in one photon line using the known replacement rules.

momentum. After the parameter integral has been performed, this
leads to the diagram in figure 6.5:

Γµν
e,Feyn[k0] = −2 (κe2)

×
[
(D− 2)

(
O(2)µν[k0] + kµ

0O(1)ν[k0]
)
+

3− D
2

ηµνk0 ρO(1)ρ[k0]
]
,

(6.2.43)

where D is referred to the arbitrary dimension over which the loop
integral is performed. Finally, we remark that, as previously discussed,
the gauge dependent part of the diagram (e) vanishes because of the
gauge invariance of the gγγ vertex. The integrals introduced in the
latter expression can be found in appendix (C).

6.2.5 Full One-Loop Correction to the Graviton Vertex in Scalar QED

To sum up, we can collect all the results of the previous sections to
construct the full one-loop correction to the graviton vertex in scalar
QED. In the Feynman gauge, the one-loop vertex is given by the
following contributions

Γµν
Feyn[p, p′; k0] = Γµν

a,Feyn + Γµν
b,Feyn + Γµν

c,Feyn + Γµν
d,Feyn + Γµν

e,Feyn , (6.2.44)

where the single terms can be found in (6.2.16), (6.2.23), (6.2.29), (6.2.38)
and (6.2.43) respectively. This vertex can be extended to any covariant
gauge with the addition of an extra term of type

Γµν
ξ [p, p′; k0] = Γµν

a, ξ + Γµν
b, ξ + Γµν

c, ξ , (6.2.45)

where the gauge dependent contributions can be found in (6.2.18),
(6.2.25) and (6.2.30). Finally, combining the two expressions above, we
obtain the full one-loop vertex in any covariant gauge:

Γµν
loop[p, p′; k0] = Γµν

Feyn + Γµν
ξ . (6.2.46)
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6.3 transversality of the one-loop gss vertex

In this section we perform a preliminary check of our result by test-
ing the transversality of the one-loop graviton-scalar amplitude con-
structed using the vertex in (6.2.46). Transversality is a property that
originates directly from the equation of motion of the graviton. It
requires that the amplitude remains unchanged if the polarization
tensor is substituted with

ϵµν → ϵµν + k0µξν + k0νξµ, k0 · ξ = k2
0 = 0, (6.3.1)

where kµ
0 is the momentum of the graviton, and ξµ an arbitrary vector

that satisfies k0 · ξ = 0. In particular, we want to verify that the
amplitude

D
(1)
loop[p, p′; ϵ, k0] = ϵµνΓµν

loop[p, p′; k0] (6.3.2)

is invariant under the replacement (6.3.1), namely

D
(1)
loop[p, p′; ξk0, k0] = 0. (6.3.3)

The expression k0ξ in (6.3.3) is a shorthand for the symmetric com-
bination of the two vectors. Transversality is a property of on-shell
amplitudes, and the equation of motion, p2 = p′2 = −m2, should
be imposed also on the scalar lines. In the following, we will use
the expressions of the individual diagrams in the Feynman gauge.
Indeed transversality is a gauge-invariant statement, so in principle
this should be sufficient. However, it is also easy to see that the gauge
dependent corrections in (6.2.18), (6.2.25) and (6.2.30) vanish on the
mass-shell p2 = p′2 = −m2, which adds to the argument.

diagram (a) The contribution from diagram (a) to the transver-
sality of the full one-loop gss amplitude is computed by contracting
the vertex correction in (6.2.16) with the symmetrized product of the
vectors k0 ξ. We obtain

k0 · Γa,Feyn · ξ + ξ · Γa,Feyn · k0 = (κe2)

[
−4p′ · p ξ · (p′ − p) J(1) · k0

− 8p′ · p k0 · J(2) · ξ + 2(p′ − p) · ξ (p′ − p) · J(2) · k0 + 2k0 · K(2) · ξ

+ 4(p′ρ − pρ) k0µξν J(3)ρµν + (p′ − p) · ξ K(1) · k0

]
, (6.3.4)

where the missing terms have been simplified through the relation

(p′ − p) · k0 = −(p′ − p) · (p′ + p) = p2 − p′2 = 0, (6.3.5)

that holds on-shell. Also, the total four-momentum conservation
p + p′ + k0 = 0 is used if needed. The result above can be further
manipulated by exploiting the vector products with external momenta
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to complete the square inside the momentum integrals in the on-shell
frame. Namely, we express

p′ · ℓ = 1
2
(ℓ2 + 2 p′ · ℓ)− 1

2
ℓ2

p · ℓ = 1
2
ℓ2 − 1

2
(ℓ2 − 2 p · ℓ)

k0 · ℓ =
1
2
(ℓ2 − 2 p · ℓ)− 1

2
(ℓ2 + 2 p′ · ℓ), (6.3.6)

where ℓ is the momentum flowing inside the loop, and momentum
conservation has been used to obtain the last equality. Using system-
atically the relations above, one can easily show that the integrals of
type J(i) and K(i) are all reduced to combinations of integrals of type
I(i) and G(i). The latter are defined in appendix C. Finally, applying
the reduction to master integrals described in (C3) for specific forms,
we rewrite (6.3.4) as

k0 · Γa,Feyn · ξ + ξ · Γa,Feyn · k0 = (κe2) ξ · k0
2 (1 + D)m2 + D k2

0
2m2 (−1 + D)

G(0)

= 0, (6.3.7)

where the condition ξ · k0 = 0 has been used to obtain a vanishing
result.

diagrams (b)-(c) The calculation of the transversality of the full
one-loop gss amplitude involves the contribution from diagram (b), as
shown in equation (6.2.23), after it is combined with the symmetrized
product of the vectors k0, ξ. In detail, this contraction produces

k0·Γb,Feyn · ξ + ξ · Γb,Feyn · k0 =

− (κe2)

[
2p′ · k0 (p′ − p) · ξ I(0)[p′] + (3p′ − p) · k0 I(1)[p′] · ξ

+ (3p′ − p) · ξ I(1)[p′] · k0 + 2 ξ · I(2)[p′] · k0

]
. (6.3.8)

This expression can be further simplified using the reductions for the
integrals presented in (C3). We obtain

Γb,Feyn · ξ + ξ · Γb,Feyn · k0 = −(κe2)

×
ξ · k0

(
4m2 (−3 + D) + k2

0 (−1 + D)2)+ 2 ξ · p′ k2
0 (1 + D)

4m2 (−3 + D) (−1 + D)
G(0),

(6.3.9)

and finally
Γb,Feyn · ξ + ξ · Γb,Feyn = 0 (6.3.10)

by using the relations k2
0 = ξ · k0 = 0.
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We can proceed in an analogous way in order to derive the contribu-
tion originating from diagram (c). This is obtained from the previous
expression (6.3.9) under the replacement p′ ↔ p (the inversion of the
loop momentum ℓ → −ℓ has no effects on the master integrals). We
easily get

Γc,Feyn · ξ + ξ · Γc,Feyn · k0 = −(κe2)

×
ξ · k0

(
4m2 (−3 + D) + k2

0 (−1 + D)2)+ 2 ξ · p k2
0 (1 + D)

4m2 (−3 + D) (−1 + D)
G(0),

(6.3.11)

and
Γc,Feyn · ξ + ξ · Γc,Feyn = 0 (6.3.12)

from the on-shell conditions.

diagram (d) Now we compute the contribution of diagram (d) to
the transversality. This can be determined by analyzing the result of
the contraction of the vertex in equation (6.2.38) with the symmetrized
product of k0, ξ, namely

k0 · Γd,Feyn · ξ + ξ · Γd,Feyn · k0 =

4 (κe2)

[
k0 · ξ

(
p′ · pI(0)[p′]− p′ ·M(2) · p

)
+ p · k0 p′ ·M(2) · ξ

+ k0 · ξ
(

I(0)[p′] + M(1) · k0

)
+ p′ · ξ

(
p ·M(2) · k0 + p · k0 M(1) · k0

)
+ p · ξ

(
p′ ·M(2) · k0 + k2

0M(1) · p′
)
− 2 p′ · p k0 ·M(2) · ξ

− p′ · p k2
0 M(1) · ξ + p′ · k0

(
p ·M(2) · ξ + p · k0 M(1) · ξ

) ]
. (6.3.13)

Using an analogous technique to (6.3.6), we can further simplify the
loop integrals that enter in the expression above. In particular, we can
complete the square inside specific integrals using now

ℓ · k0 =
1
2
(2ℓ · k0 + ℓ2)− 1

2
ℓ2 − 1

2
k2

0

ℓ · p =
1
2
ℓ2 − 1

2
(ℓ2 − 2 p · ℓ)

ℓ · p′ = 1
2
(ℓ2 − 2 p · ℓ)− 1

2
(2ℓ · k0 + ℓ2) +

1
2

k2
0, (6.3.14)

Combining those relations when necessary together with the conser-
vation of the total four-momentum and the tensor-reduction formulae
for integrals of type I(1) described in (C3), we rewrite (6.3.13) as

k0 · Γd,Feyn · ξ + ξ · Γd,Feyn · k0 = − (κe2)

2
ξ · k0(2 G(0) + k2

0 O(0)[k0]).
(6.3.15)

Finally, using on-shell conditions, we obtain

k0 · Γd,Feyn · ξ + ξ · Γd,Feyn · k0 = 0. (6.3.16)
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diagram (e) The final contribution that must be taken into account
in the transversality calculation of the one-loop gss vertex comes from
diagram (e), shown in equation (6.2.43). By contracting it with the
symmetrized k0, ξ, we obtain

k0 · Γe,Feyn · ξ + ξ · Γe,Feyn · k0 =

− (κe2)

{
(D− 2)

(
2k0 ·O(2)[k0] · ξ + k2

0 O(1)[k0] · ξ + k0 · ξ O(1)[k0] · k0

)
+ (3− D) k0 · ξ O(1)[k0] · k0

}
(6.3.17)

Through the help of the reductions in (C3), one immediately verifies
that the expression above can be simplified to

k0 · Γe,Feyn · ξ + ξ · Γe,Feyn · k0 =
(κe2)

2
ξ · k0 k2

0 O(0)[k0], (6.3.18)

and, using on-shell conditions, we obtain as expected

k0 · Γe,Feyn · ξ + ξ · Γe,Feyn · k0 = 0. (6.3.19)

transversality In this section we have verified the on-shell
transversality of the one-loop graviton-scalar amplitude constructed
using the vertex in (6.2.46). In particular, we have tested the transver-
sality by examining the individual contributions from the diagrams in
figure (6.1), all of which vanish separately. In other words, we don’t
have any interplay among diagrams in the transversality test. This may
arise from specific properties three-particle systems, that, once on-shell
conditions are imposed on all external legs, become over-constrained
and transversality often turns out to be simple. In the previous chapter,
transversality of the full amplitude on the graviton line was derived as
a direct result of the Ward identities generated by (5.2.7) once on-shell
conditions are imposed. In the future, a possible task is to make us of
generating functions of the form (5.2.7) to provide off-shell relations
that could serve as a rigorous test of our results.

6.4 final remarks

In this chapter, we have applied (and expanded upon) the method pre-
sented in chapter 5 to calculate the radiative one-loop correction to the
scalar-scalar-graviton vertex in any dimension. This was accomplished
by sewing together the two external photons in the scalar amplitude
with one graviton and two photons, using any covariant gauge. Specif-
ically, we have computed the radiative correction at the one-loop level
for the vertex by examining the relevant diagrams and computing their
contributions using worldline techniques. A revised replacement rule
in (6.1.7) was required to ensure a completely off-shell outcome. Our
construction has been tested by verifying the on-shell transversality.
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In the following part of the thesis, we will set aside the study of
dressed propagators while still utilizing the worldline formalism as the
core principle. In particular, we will examine recent developments in
color-kinematics duality and double copy for scattering amplitudes by
exploring how these nicely combine with well-established worldline
methods.
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In this chapter we present a novel procedure to construct Berends-
Giele currents using the Bern-Kosower formalism for one-loop gluon
amplitudes. Applying the pinch procedure of that formalism to a
suitable special case, the currents are naturally obtained in terms of
multiparticle fields and obeying color-kinematics duality. Constructed
as composite fields in the labels of the external states, the multiparticle
fields, firstly introduced in [125, 126] and stabilized in [127], have
proven to be a useful and efficient method for building scattering
amplitudes, specifically at high multiplicities. In this chapter, we re-
view how color-kinematics duality can be conveniently restated in the
multiparticle language by means of the so-called Generalized Jacobi
Identities (GJI). Furthermore, combining the multiparticle approach
with techniques inspired by the Bern-Kosower formalism, we obtain
building blocks for the construction of tree-level gluon amplitudes,
that will naturally appear in a color-kinematic-dual representation.
Results discussed in this chapter are published in [76].

7.1 the structure of worldline integrands and pinch

operators

In the preceding parts of this manuscript we have introduced the
Bern-Kosower formalism as simple and direct method to construct
one-loop on-shell n-gluon amplitudes. In particular, in section 2.3.3
we have briefly reviewed the set of rules provided by this formalism
for the construction of parameter integrals that build the amplitude.
For the purposes of this chapter, the most relevant aspect of these
Bern-Kosower rules is that they allow one to reconstruct the integrands
of the reducible contributions to the amplitude from the one of the
irreducible one by a pinching procedure. The latter is encoded in the
Bern-Kosower master formula for one-particle irreducible amplitudes

Γ(k1, ε1; . . . ; kn, εn) = (−ig)nTr(Ta1 · · · Tan)
∫ ∞

0

dT

(4πT)
D
2

e−m2T
∫ T

0
dτ1

· · ·
∫ τn−2

0
dτn−1 exp

{ n

∑
i,j=1

(1
2

Gijki · k j − iĠijε i · k j +
1
2

G̈ijε i · ε j

)}∣∣∣
ε1 ...εn

,

(7.1.1)

105



106 color-kinematics from the string-inspired formalism

which we have already encountered in (2.3.30). The n-gluon contribu-
tion to the amplitude is obtained expanding the exponential above
keeping only the terms linear in each polarization, namely

exp
{
·
}
|ε1 ...εn ≡ (−i)nPn

(
Ġij, G̈ij

)
e

1
2 ∑n

i,j=1
1
2 Gijki ·k j . (7.1.2)

According to the procedure presented in section 2.3.3, the application
of the Bern-Kosower pinch rules requires one to first perform certain
partial integrations to the integrand that effectively remove quartic
vertices. These partial integrations have to be performed using the
symmetric partial integration algorithm introduced in section 2.3.4, that
allows for the replacement

Pn
(
Ġij, G̈ij

)
→ Qn

(
Ġij
)

. (7.1.3)

The general structure of the resulting integrand Qn
(
Ġij
)

is remarkable:
as we have seen in section 2.3.4, it is symmetric under permutations
of the external legs and homogeneous in the polarizations ε i and
momenta ki. This allows to completely redefine the integrand in terms
of cycles Zk(i1, i2, . . . , ik), built as traces of products of gluon field
strength tensors f µν

i = kµ
i εν

i − kν
i ε

µ
i , and leftover terms, called tails

and denoted as T(i1, i2. . . . , il). The tails are not manifestly transversal
objects, however they turn into total derivatives whenever any of the
polarization ε im contained in them is replaced by kim . These properties
have important consequences, as it will be clear in the following. For
the time being, we just point out that clearly the pinching procedure
in the Bern-Kosower formalism must include the full information on
the Berends-Giele currents attached to the loop. The main goal of this
chapter is the analysis of these currents, that, within this construction,
show generalized structures that manifestly exhibit color-kinematics
duality —see section 3.3.

The main ingredients of our approach are the symmetric partial
integration algorithm and the Bern-Kosower replacement rules men-
tioned above. Once the algorithm has been applied to produce the
permutation invariant integrand Qn

(
Ġ
)
, we can construct reducible

contributions through the rules outlined in 2.3.3. In this process, it is
useful to introduce a pinch operator acting on Qn, that synthesizes the
effect of the pinching rules: for two adjacent legs i and j with i < j, it
is defined as

DijQn =
∂

∂Ġij
Qn

∣∣∣∣ Ġij=0
Ġjk→Ġik

, (7.1.4)

i.e. it acts only on terms linear in Ġij. It is worth mentioning that,
inside the pinch operator, we haven’t included the factors specified
by the Bern-Kosower rules that guarantee the correct pole structure
of the amplitude —see (2.3.32). For the time being, we are mostly
interested in the algebraic structure of the integrand when one (or
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more) pinch operators act on it. The correct pole structure will be
recovered later in the chapter, when we will compute full scattering
amplitudes. Diagrammatically, we can depict the action of the pinch
operator on the integrand Qn as

D12


kn

k1

k2

k3
k4

··
·


=

kn

k2

k1

k3
k4

··
· ,

where two adjacent legs 1 and 2 have been pinched together.

In order to understand the basic link between the pinch operator and
color-kinematics duality, let us first define the so-called generalized
Jacobi identities (GJI) [16, 128]. Let P be a word, i.e. a multiparticle
label of type P = 12 . . . n —see 4.1 for the notation. Consider the free
Lie algebra Lie[1, . . . , n] generated by all the words in the letters in
P, and introduce ℓ as the left-to-right bracketing on Lie[1, . . . , n]. The
latter is recursively defined as

ℓ(i1i2 · · · ik) = ℓ(i1i2 · · · ik−1) ik − ik ℓ(i1i2 · · · ik−1)

ℓ(i) = i

ℓ(∅) = 0. (7.1.5)

The generalized Jacobi identities correspond to the elements in the
kernel of ℓ. For example

ℓ(12 + 21) = 0, ℓ(123 + 231 + 312) = 0, (7.1.6)

which correspond with the antisymmetry and Jacobi identity of the
Lie bracket.

Using the identity ℓ(Pℓ(Q)) = [ℓ(P), ℓ(Q)], it is easy to see that
ℓ(Aℓ(B) + Bℓ(A)) = 0 for any words A and B. In addition, due to the
recursive definition of ℓ if ℓ(P) = 0 it also follows that ℓ(PQ) = 0 for
any word Q. Therefore, for objects labeled by words, the generalized
Jacobi identities can be characterized by an abstract operator Lk

Lk ◦ KABC ≡ KAℓ(B)C + KBℓ(A)C, (7.1.7)

where this definition holds ∀A, B ̸= ∅ and ∀C such that |A|+ |B| = k.
The partition of non-empty words A and B in the above definition is
arbitrary, while C can be empty. This leads a non-unique operator Lk,
e.g.

L3 ◦ K123 =K123 − K132 + K231, for A = 1, B = 23, C = ∅

L3 ◦ K123 =K123 + K312 − K321, for A = 12, B = 3, C = ∅. (7.1.8)
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1 · · ·

2 3 p

· · · ↔ K12...p = KP

Fig. 7.1: The correspondence between local multiparticle superfields K12...p =
KP and tree-level subdiagrams.

Note that the two expression agree if L2 ◦ K123 = 0 is guaranteed. In
general, we say that the objects KP satisfy generalized Jacobi identities
iff

Lk ◦ KP = 0, ∀k ≤ |P|. (7.1.9)

The generalized Jacobi identities are also called BCJ symmetries. We
can give

K12C + K21C = 0, ∀C,

K123C + K231C + K312C = 0, ∀C,

K1234C + K2143C + K3412C + K4321C = 0, ∀C, (7.1.10)

where we have already used the fact that KP satisfies the BCJ sym-
metries Lk ◦ KP = 0 for all k ≤ |P| to simplify the appearance of the
above.

It is easy to convince ourselves that the BCJ symmetries in (7.1.10)
are equivalent to the symmetries obeyed by the following string of
structure constants —see figure 7.1. We have a precise correspondence

K12...p ↔ f a1a2b f ba3c · · · f zapa, (7.1.11)

that we can exploit if we look at the identities in (7.1.10). The first two
lines of of the latter are the counterparts of the antisymmetry f a1a2a =

− f a2a1a and the Jacobi identities f a1a2a f aa3b + cyc(1, 2, 3) = 0. More
generally, if the objects KP represent multiparticle fields that contain
the kinematic information of the external particles, the correspondence
(7.1.11) lines up with the BCJ duality between color and kinematics
introduced in section 3.3. Accordingly, multiparticle fields that satisfy
the symmetries (7.1.9) are said to be in the BCJ gauge [100].

Since the fields KP in the BCJ gauge satisfy the same generalized
Jacobi symmetries as nested brackets ℓ(P) = [[. . . [[p1, p2], p3], . . .], pn],
it is convenient to use a notation where this is manifest. To this effect,
a word P is understood as having a nested bracket structure P→ ℓ(P)
and we define

KP ≡ Kℓ(P). (7.1.12)

For instance, K12 = K[1,2] and K123 = K[[1,2],3]. The Jacobi symmetry
allows the definition of local superfields with a even more general
bracketing structure. Using the identity

[ℓ(A), ℓ(B)] = ℓ(Aℓ(B)), (7.1.13)
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a1

a2 a3 a|A|

· · ·

K[A,B]↔· · ·

b1

b2 b3 b|B|

· · ·

Fig. 7.2: The planar binary tree associated with the multiparticle field K[A,B].

it is always possible to flatten brackets within multiparticle fields,

K[A,B] ≡ K[ℓ(A),ℓ(B)] = Kℓ(Aℓ(B)) ≡ KAℓ(B). (7.1.14)

For example,

K[[1,2],[3,4]] = Kℓ(12ℓ(34)) = K[[[1,2],3],4] − K[[[1,2],4],3]

K[1,[[2,3],4]] = Kℓ(1ℓ(234))

= K[[[1,2],3],4] − K[[[1,3],2],4] − K[[[1,4],2],3] + K[[[1,4],3],2]. (7.1.15)

Identities of this type will be extremely helpful in the following, where
manipulations of multiparticle fields in the BCJ gauge will be neces-
sary in the computation of amplitudes. They can be visualized as the
systematic use of Jacobi identities to flatten out of the planar binary
tree associated with the two branches.

Now that we have obtained the GJI and have exploited some of their
basic properties, we can explore the connection between these and
the pinch operators introduced in (7.1.4) in more detail. For this, we
need to understand a little better the structure of the polynomial Qn

obtained after IBP in (7.1.3). Given a map α : {1, . . . , n} → {1, . . . , n},
consider the following polynomial of degree n on the Ġij’s

Q(α)
n = ∑

perm.
C12...nĠ1α(1)Ġ2α(2) · · · Ġnα(n), (7.1.16)

where the coefficients C12...n depend on the polarizations and momenta.
Then, making use of the permutation symmetry of Qn, we can write it
as a sum of polynomials of the form (7.1.16). Therefore, to understand
how the pinch operators act on Qn, it will be enough to consider their
action on such polynomials. For this, it will be convenient first to
examine a specific example. Take n = 4 and α such that α(1) = 2,
α(2) = 1, α(3) = 2 and α(4) = 3. By a straightforward calculation,
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one finds that the action of the pinch operator D12 on the resulting
polynomial Q(α)

4 yields

(C3214 − C3124)Ġ2
13Ġ14 + (C4312 − C4321)Ġ13Ġ2

34 + (3↔ 4). (7.1.17)

We can check directly that each of the coefficients is antisymmetric in
1 and 2, i.e. they satisfy the GJI of order 1 —see first line of (7.1.10).
Let us next apply the pinch operator D13 to (7.1.17). The result is

(C4213 − C4123 + C4312 − C4321)Ġ2
14. (7.1.18)

Now the coefficient satisfies the Jacobi identity in 1, 2 and 3, i.e. the
GJI of order 2 —see second line of (7.1.10). Returning to the general
case, we may infer that the iterated action of the pinch operators
D12, D13, . . . , D1(n−1) on a polynomial of the form (7.1.16) will produce
a monomial in Ġ1n. Explicitly,

D1(n−1) · · ·D13D12Q(α)
n = C̃12...nĠ2

1n, (7.1.19)

where the coefficient C̃12···n satisfies the GJI of order n− 1 in 1, 2, . . . , n−
1. We have checked that this property holds up to degree n = 9.

We make a final remark on how the above can be represented
diagrammatically. Using the correspondence (7.1.11) and the identi-
fication (7.1.12) with nested brackets, we interpret the left-to-right
bracketing in Lie[1, . . . , n] as a planar binary tree and vice versa using
the correspondence (7.1.11). For example,

ℓ(12) =

1 2

, ℓ(12) =

1 32

, . . . . (7.1.20)

Using this notation, we find, for instance, that the iterated action of
D12 and D13 on Qn can be graphically represented as

D13D12


kn

k1

k2

k3
k4

··
·


=

kn

ℓ(123)

k4

··
· . (7.1.21)

7.2 multiparticle fields from pinching

Making use of the properties of the Bern-Kosower integrands dis-
cussed in the previous section, we are ready now to present our novel
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technique for the construction of the coefficients of Berends-Giele cur-
rents for Yang-Mills directly in the BCJ gauge. As we have pointed out
in (7.1.4), we omit the tree propagators in the implementation of the
conventional Bern-Kosower pinch rules: at this point, we prefer to ex-
ploit the symmetries in the integrands, and use these to obtain all the
coefficients of the Berends-Giele currents. We will include propagators
later in this chapter, where computation of full scattering amplitudes
will be carried out.

The two main quantities that we want to compute are the coeffi-
cients of the multiparticle currents Jµ

P and the field strength currents
Fµν

P , introduced in chapter 4 as tools for the calculation of scattering
amplitudes. The idea is to compute these quantities not relying on
standard recursion relations, e.g. (4.2.15)-(4.2.16), but using a novel
technique based on Bern-Kosower pinch rules. In this way, we will be
able to obtain multiparticle numerators in the BCJ gauge on the spot.

The appropriate quantity for finding the field strength multiparticle
coefficients is the sum of the terms in polynomial Qn with a single one-
cycle component. Using the notation (2.3.40), the one-cycle components
are only those with one single label as superscript, e.g.

Q̃n = Q2
n + Q3

n + . . . + Qn
n. (7.2.1)

Using now (7.1.19), we obtain

D1(n−1) · · ·D13D12Q̃n = Z2(12 . . . n− 1, n)Ġ2
1n

= 1
2 f µν

12···(n−1) fnνµĠ2
1n, (7.2.2)

where f µν

12···(n−1) satisfy the GJI, i.e. we identify

f µν

12···(n−1) ≡ f µν

[[···[1,2],··· ],(n−1)], (7.2.3)

in agreement with the property derived in (7.1.19). The identification
of f µν

12···(n−1) with the multiparticle generalization of the field strength
tensor comes naturally if we look at the integrand Q2, representing the
bubble diagram with two external legs merging into the loop —see
the first diagram in figure 7.3. This is simply given by

Q2 = Z2(1, 2)Ġ2
12 = 1

2 f µν
1 f2νµĠ2

12, (7.2.4)

where we have used the global definition of cycles given in (2.3.37).
Here f µν

1 is nothing the usual abelian one-particle field strength tensor

f µν
i = kµ

i εν
i − kν

i ε
µ
i , (7.2.5)

already encountered previously in this manuscript. Using now the
maximal pinch prescription on a n-point integrand Qn, we recover a
bubble integrand with the same structure of (7.2.4). Here all the kine-
matic information of the n− 1 particles are all contained in one single
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21

2

3

1

Fig. 7.3: Bubble and triangle diagrams describing the integrands Q2 and Q3
respectively.

field, that is naturally interpreted as the multiparticle generalization
of the field strength tensor —see figure 7.4.

From the field strength tensors one can also extract the multipar-
ticle polarizations, using the expression (4.2.16) that relates the field
strength coefficients to the Berends-Giele ones. This procedure will be
clarified later in the chapter, where the relation among multiparticle
fields and Berends-Giele currents will be exploited. However it turns
out that those can alternatively be obtained applying pinch operators
just to the tails1

D1(n−1)D1(n−2) · · ·D13D12T(1, 2, . . . , n− 2) = ε12···(n−2) · kn−1. (7.2.6)

The multiparticle polarizations obtained in either way will satisfy the
corresponding GJI, i.e.

ε
µ

12···(n−2) ≡ ε
µ

[[···[1,2],··· ],(n−2)], (7.2.7)

where again the property in (7.1.19) is exploited. Note, however, that
the second tail-pinching method requires one to know the tails to one
order higher than is necessary for the first cycle-pinching approach.
Again we naturally obtain the interpretation (7.2.6) looking at the
simplest case where a one-tail appears, i.e. the triangle integrand Q3

—see the second diagram in figure 7.3. Its expression contains

Ġ(2, 3)T(1) = Z2(2, 3)Ġ2
23T(1), (7.2.8)

where
T(i) = ∑

r
ε i · krĠ1r. (7.2.9)

If now we apply the maximal pinch prescription on a n-point integrand
Qn, and we look at the term Ġ(n− 1, n)T(1, 2, . . . , n− 2), the pinch
acts only on the (n − 2)-tail. The final result must have the same
structure of (7.2.9), where all the kinematic information of the n− 2
particles are contained in one single field, that is interpreted as the
multiparticle generalization of the single particle polarization —see
figure 7.5.

1 Here the last pinch operator D1(n−1) is applied to get a more compact defining
expression for the polarization ε12···(n−2), but it doesn’t affect the algebraic structure
of the polarization itself. See [76] for an alternative definition.
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n1

2

· · ·

n− 1

←→ f µν

[[···[1,2],··· ],n−1]

Fig. 7.4: Multiparticle generalization of the bubble integrand, that we can
exploit to compute the multiparticle field strength tensor f µν

[[···[1,2],··· ],n−1].

Up to now, we have obtained an intuitive interpretation of the fields
f µν
P and ε

µ
P, and we have understood why these should be considered

as multiparticle generalizations of field strength tensor and to the
gluon polarization respectively. Now it is important to clarify how
these fields are related to the standard Berends-Giele currents Fµν

P
and Jµ

P introduced in chapter 4: when the link with the Berends-
Giele formulation is understood, we are finally able to compute full
scattering amplitudes. Clearly, the fields f µν

P and ε
µ
P cannot contain the

full information of the Berends-Giele currents for two simple reasons:

• In the pinching procedure we have deliberately ignored the local-
ity structure of the multiparticle fields. We want to reintroduce
somehow the propagators if we want to have any chance to
reproduce the Berends-Giele formula.

• According to the convention in Bern-Kosower formalism detailed
in section 2.3.3, the pinching procedure starts with the outermost
vertices and recursively removes the trees attached to the loop
in an ordered manner. Thus, the coefficients f µν

P and ε
µ
P in (7.2.2)

and (7.2.6) should encode information only about the diagram

1

2

· · ·

p

· · · (7.2.10)

On the other hand, Berends-Giele currents describe the full set of
color-ordered diagrams, each characterized by a specific locality
structure, like

1

2 3

· · ·
+· · ·

1

2 3

· · ·
+ · · ·· · ·

(7.2.11)
This information is clearly not included in the single diagram
(7.2.10), and must be recovered somehow. Note that in the dia-
grams above the dotted line represents the leg that merges into
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n− 1

n

1

2

· · ·

n− 2

←→ ε
µ

[[···[1,2],··· ],n−2]

Fig. 7.5: Multiparticle generalization of the triangle integrand, that is used to
compute the multiparticle polarization ε

µ

[[···[1,2],··· ],n−2].

1

2

s12

3 4

s123

· · ·

p

s123...p
· · · ←→ ε

µ
P, f µν

P

Fig. 7.6: Cubic diagram whose kinematic representatives are the multiparticle
fields ε

µ
P, f µν

P . Note that the n = p + 1 leg is maintained off-shell, in a
consistent way with the Berends-Giele currents formulation.

the loop. If we cut this line from the loop and we identify it with
an external on-shell leg, we expect to recover the corresponding
partial amplitude.

In order to do some progress, we have first of all to do a precise math-
ematical characterization of the quantities f µν

P and ε
µ
P, i.e. we have

to understand which quantities they exactly represent. The intuition
given previously in this section is an hint. However, we can character-
ize them with no margin of error by direct comparison of quantities
contained in [98, 127]. Explicit examples of the coefficients f µν

P and ε
µ
P

will be given in the next section. For the time being, we limit ourselves
to say that these multiparticle fields should be identified as the kine-
matic representatives of the diagram of type (7.2.10), where p legs are
on-shell and the n = p + 1 leg is maintained off-shell. In other words,
they represent exactly the numerators of the coefficients inside Fµν

P
and Jµ

P associated to the aforementioned diagram, i.e. the coefficients
in the Berends-Giele formula with the corresponding locality structure
—see figure 7.6. In the next section, we will give explicit examples of
the numerators f µν

P and ε
µ
P, while at the end of the chapter we will see

how these objects can be used to construct amplitudes through full
Berends-Giele currents.
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1

2

s12
· · · ←→ ε

µ

[1,2], f µν

[1,2]

Fig. 7.7: Diagrammatic interpretation of the rank-two fields f µν

[1,2] and ε
µ

[1,2].

7.3 examples

In this section we will now work out the technique presented in the
previous section to compute the multiparticle fields f µν

P and ε
µ
P up to

n = 5.

7.3.1 Two-Particle Case

At rank two, the numerator f µν

[1,2] is extracted from the Q3 integrand
(2.3.38), where only one-cycles are involved. To obtain the bubble
integrand numerator we only have to pinch the two legs 1 and 2, and
use (7.2.2)

D12Q3 = Z2(12, 3)Ġ2
13. (7.3.1)

The explicit expression for the Lorentz two-cycle for this case is

Z2(12, 3) = ε2 · k1Z2(1, 3)− 1
2 Z3(1, 2, 3)− (1↔ 2). (7.3.2)

We can immediately see that f νµ
3 can be factorized out to give the

two-current field strength numerator

f µν

[1,2] = ε2 · k1 f µν
1 − ( f1 f2)

µν − (1↔ 2) . (7.3.3)

From the definition of the two-tail in (2.3.43) and using (7.2.6), we
compute

D13D12T(1, 2) = ε [1,2] · k3, (7.3.4)

and extract the two-particle polarization

ε
µ

[1,2] =
1
2

[
ε2 · k1ε

µ
1 − ε1ρ f ρµ

2 − (1↔ 2)
]

. (7.3.5)

It is not hard to check that, at rank two, the multiparticle fields are
proportional to their Berends–Giele counterparts. This is plausible,
since the latter only describe a single cubic diagram —see figure 7.7.
Evidently the fields f µν

[1,2] and ε
µ

[1,2] are antisymmetric in 1 and 2, and
obey to the order-1 GJI:

ε
µ

[1,2] + ε
µ

[2,1] = 0

f µν

[1,2] + f µν

[2,1] = 0. (7.3.6)
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1

2

s12

3

s123
· · · ←→ ε

µ

[[1,2],3], f µν

[[1,2],3]

Fig. 7.8: Diagrammatic interpretation of the rank-three multiparticle fields
ε

µ

[[1,2],3], f µν

[[1,2],3] subject to Jacobi relations such as ε
µ

[[1,2],3] + cyc(1, 2, 3) = 0.

7.3.2 Three-Particle Case

Considering now rank three, the numerator f µν

[[1,2],3] is obtained starting
from the one-cycle components of Q4, i.e.

Q̃4 = Q4
4 + Q3

4 + Q2
4. (7.3.7)

The latter will immediately deliver the field strength three-current.
Using the defining relation

D13D12Q̃4 = Z2(123, 4)Ġ2
14, (7.3.8)

we easily extract

f µν

[[1,2],3] = kµ
123εν

[[1,2],3] − k12 · k3ε
µ

[1,2]ε
ν
3

− k1 · k2(ε
µ
1εν

[2,3] + ε
µ

[1,3]ε
ν
2)− (µ↔ ν). (7.3.9)

Here for compactness we have included the multiparticle polarization
εν
[[1,2],3]. We compute the latter using the expression for T(1, 2, 3) that

can be found in appendix C of [37]. In particular, making use of (7.2.6)

D14D13D12 T(1, 2, 3) = ε [[1,2],3] · k4, (7.3.10)

we obtain

ε
µ

[[1,2],3] =
1
2

[ (
k3 · ε [1,2]

)
ε

µ
3 − (k12 · ε3) ε

µ

[1,2]

+ ε [1,2]ν f νµ
3 − ε3ν f νµ

[1,2]

]
− kµ

123h123, (7.3.11)

where we have included the extra term

h123 = 1
4 ε1 · ε2 ε3 · (k2 − k1) . (7.3.12)

We employ the hP scalars here for notational compactness and to
compare with the results of [98, 127], where those were introduced
to take the numerators from the Lorenz gauge to the BCJ gauge. The
expressions for the hP’s are different from the ones in [98, 127], but
the difference can be understood as a residual generalized gauge
transformation that doesn’t affect the symmetry properties of the
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coefficients. However, the non-trivial fact that we want to point out
here is that in [98, 127] the scalars hP’s were introduced as a result
of non-linear transformations in order to achieve numerators in the
BCJ gauge. This is not our case: the scalars hP’s appear naturally as
a result of the pinch algorithm, and further transformations are not
needed to obtain coefficients in the desired representation —see figure
7.8. Indeed it easy to check that both (7.3.9) and (7.3.11) satisfy the GJI

ε
µ

[[1,2],3] + ε
µ

[[2,1],3] = 0

ε
µ

[[1,2],3] + ε
µ

[[2,3],1] + ε
µ

[[3,1],2] = 0. (7.3.13)

7.3.3 Four-Particle Case

Following the same procedure at rank four (see appendix C of [37] for
the expression of Q5), we arrive at the field strength numerator in the
four-particle case

f µν

[[[1,2],3],4] =kµ
1234εν

[[[1,2],3],4] + k123 · k4εν
[[1,2],3]ε

µ
4 + k12 · k3

[
εν
[1,2]ε

µ

[3,4]

+εν
[[1,2],4]ε

µ
3

]
+ k1 · k2

[
εν

1ε
µ

[[2,3],4] + εν
[[1,3],4]ε

µ
2 + εν

[1,3]ε
µ

[2,4]

+εν
[1,4]ε

µ

[2,3]

]
− (µ↔ ν). (7.3.14)

We also find the numerator of the four-particle polarization using
tail T(1, 2, 3, 4) that again can be found in the appendix C of [37].
Computing

D15D14D13D12 T(1, 2, 3, 4) = ε [[[1,2],3],4] · k5, (7.3.15)

we extract

ε
µ

[[[1,2],3],4] =
1
2

[
ε

µ
4

(
ε [[1,2],3] · k4

)
− ε

µ

[[1,2],3] (ε4 · k123) + ε [[1,2],3]ν f νµ
4

− ε4ν f νµ

[[1,2],3]

]
+ ε

µ
3(k12 · k3)h124 + k1 · k2

(
ε

µ
2h134

− ε
µ
1h234

)
− kµ

1234h1234, (7.3.16)

where the new scalar h1234 is defined as

h1234 = 1
4

[
ε1 · ε2 ε3 · k2ε4 · (k1 − k23)

+ 1
2 (ε1 · ε2 ε3 · ε4 k2 · k3)− (123→ 312)

]
− (1↔ 2). (7.3.17)

A corresponding multiparticle field with the BCJ property was also
obtained in [98, 127]: here a two-step procedure involving a BRST-
inspired transformation was necessary to compute the numerators in
the desired gauge. It is worth noting that this transformation is more
complicated than the one used at rank three to compute h123, i.e. it
requires an additional step to obtain the final result. Moreover, as one
can expect, the complexity of the transformations increases at increas-
ing rank. Thus, the benefit of our procedure is really far from trivial:
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the numerators are obtained immediately in BCJ gauge regardless of
the rank we are considering, and complex transformations are avoided
at all. We briefly mention the GJI satisfied by the numerators:

ε
µ

[[[1,2],3],4] + ε
µ

[[[2,1],3],4] = 0

ε
µ

[[[1,2],3],4] + ε
µ

[[[3,1],2],4] + ε
µ

[[[2,3],1],4] = 0

ε
µ

[[[1,2],3],4] − ε
µ

[[[1,2],4],3] + ε
µ

[[[3,4],1],2] − ε
µ

[[[3,4],2],1] = 0. (7.3.18)

One noteworthy property is related to some symmetry properties ex-
hibited by the scalars hP that are computed using our pinch technique.
Indeed, looking at the first examples (7.3.12)-(7.3.17), it is clear that
the scalars h12...n satisfy the GJI of order n− 1, e.g.

h123 + h213 = 0 (7.3.19)

and

h1234 + h2134 = 0

h1234 + h2314 + h3124 = 0. (7.3.20)

This property will continue to hold for the n = 5 case, as it will be
clear in the following. This fact should not be surprising. This result
should not come as a surprise, since in the original derivation of the
hP fields (e.g. see [127]), it was shown that, for any |P| = p, hP satisfies
all Lie symmetries Lk with k ≤ p− 1. Our pinch technique confirms
this property.

7.3.4 Five-Particle Case

As a final example, we present the rank-five numerators computed
through the pinch technique. Again, looking at the one-cycle compo-
nents of Q6, always contained in [37], we extract the multiparticle field
strength

f µν

[[[[1,2],3],4],5] =kµ
12345εν

[[[[1,2],3],4],5] + k1234 · k5ε
µ
5εν

[[[1,2],3],4]

+k123 · k4
(
ε

µ
4εν

[[[1,2],3],5] + ε
µ
45εν

[[1,2],3]

)
+k12 · k3

(
ε

µ
3εν

[[[1,2],4],5] + ε
µ
35εν

[[1,2],4] + ε
µ
34εν

[[1,2],5] + ε
µ
345εν

[1,2]

)
+k1 · k2

(
ε

µ
2εν

[[[1,3],4],5] + ε
µ
25εν

[[1,3],4] + ε
µ
24εν

[[1,3],5] + ε
µ
23εν

[[1,4],5]

+ε
µ
245εν

[1,3] + ε
µ
235εν

[1,4] + ε
µ
234εν

[1,5] + ε
µ
2345εν

1
)
− (µ↔ ν),

(7.3.21)
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where

ε
µ

[[[[1,2],3],4],5] =
1
2

[
ε

µ
5

(
ε [[[1,2],3],4] · k5

)
− ε

µ

[[[1,2],3],4] (ε5 · k1234)

+ ε [[[1,2],3],4]ν f νµ
5 − ε5ν f νµ

[[[1,2],3],4]

]
+ (k123 · k4)ε

µ
4h1235

+ (k12 · k3)
(
ε

µ
3h1245 + ε

µ

[3,4]h125 − ε
µ

[1,2]h345
)

+ (k1 · k2)
(
ε

µ
2h1345 + ε

µ

[2,3]h145 + ε
µ

[2,4]h135

− ε
µ
1h2345 − ε

µ

[1,3]h245 − ε
µ

[1,4]h235
)
− kµ

12345h12345. (7.3.22)

For the sake of brevity, we omit here the expression of the scalar
h12345, that can be found in [76, 129]. Above the expression of the
multiparticle polarization ε [[[[1,2],3],4],5] has been computed using the
rule (7.2.6) through the five-point tail T(1, 2, 3, 4, 5), whose expression
is contained in [76]. It should be noted that a closed formula for
the construction of currents of the form (7.3.21) with any number of
particles already exists in the literature, e.g. as described in [130].

Finally, we explicit the GJI obeyed by the numerators (7.3.22) and
(7.3.21):

ε
µ

[[[[1,2],3],4],5] + ε
µ

[[[[2,1],3],4],5] = 0

ε
µ

[[[[1,2],3],4],5] + ε
µ

[[[[3,1],2],4],5] + ε
µ

[[[[2,3],1],4],5] = 0,

ε
µ

[[[[1,2],3],4],5] − ε
µ

[[[[1,2],4],5],3] + ε
µ

[[[[3,4],1],2],5] − ε
µ

[[[[3,4],2],1],5] = 0,

ε
µ

[[[[1,2],3],4],5] − ε
µ

[[[[1,2],3],5],4]+

ε
µ

[[[[4,5],1],2],3] − ε
µ

[[[[4,5],2],1],53] − ε
µ

[[[[4,5],3],1],2] + ε
µ

[[[[4,5],3],2],1] = 0.

(7.3.23)

In this section we have showed a simple and algorithmic method
to compute numerators ε

µ
P and f µν

P for cubic off-shell diagrams. We
have computed these objects using techniques borrowed from the
Bern-Kosower formalism, that allow us to obtain fields directly in the
BCJ gauge. The connection of the multiparticle fields to Berends-Giele
currents will be further explained in the following section. Now we
just want to mention that we have explicitly checked the combinatorial
properties of the numerators ε

µ
P and f µν

P up to length |P| = 7, and the
procedure for the construction of such quantities is not expected to
break at higher orders. In particular, the construction of tails, that in
turn provide the expression for ε

µ
P, requires increasing computational

time at increasing rank, but still the symmetric IBP algorithm applies
and, in principle, we are able to obtain numerators at any number of
points.

7.4 multiparticle fields and berends-giele currents

Armed with the results of the previous section, we want now to re-
late the Jacobi-satisfying numerators for cubic off-shell diagrams to
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Berends–Giele currents in the BCJ gauge. The idea is relatively simple:
we want to construct alternative currents combining cubic diagrams
and dressing them with multiparticle polarizations and propagators.
In particular, we take inspiration from the recursion relations in (4.2.15)
and (4.2.29), where color-stripped and color-dressed currents respec-
tively are computed. Now we want to compute similar currents using
the multiparticle fields seen in the previous section. The final goal
is to obtain expression for color-ordered and full Yang-Mills ampli-
tudes in such a way that color-kinematics duality is satisfied. The
relevant quantity for the computation of these objects is the multipar-
ticle polarization ε

µ
P, so in the following we can restrict our attention

to it.

7.4.1 Color-Stripped Berends-Giele Currents

In order to compute color-stripped (or color-ordered) Berends-Giele
currents, it is very convenient to introduce a new tool termed color-
stripped Berends-Giele map, or binary tree map as in [16, 131]. This repre-
sents a combinatorial artifact that allows us to identify all the planar
binary trees in a given color-ordered amplitude and that helps to keep
track of the correspondence between these trees and nested Lie brack-
ets. It is defined as the map bcs acting on all words and determined
recursively by

bcs(i) = i,

bcs(P) =
1
sP

∑
P=QR

[bcs(Q), bcs(R)], (7.4.1)

where sP is the Mandelstam invariant, and where ∑P=QR denotes the
sum over all possible deconcatenations of the word P into Q and R.
We denote p = |P| as the length of the word P. The sum in (7.4.1) has
to be understood as reproducing all the possible color-ordered cubic
diagrams that can be constructed with n = p + 1 external legs, or
equivalently as all the possible nested brackets built with the ordered
word P. Also as a matter of notation, for an arbitrary labeled object UP,
such as the multiparticle polarization fields ε

µ
P, we bring the definition

from [16] for the replacement of words by such object as

JUK ◦ P = UP. (7.4.2)

With this background in mind, the color-stripped Berends-Giele po-
larization current can be defined from a purely combinatorial point
of view based on the map bcs(P) acting on the multiparticle polar-
ization fields ε

µ
P, that in our notation represent the numerators of

specific coefficients within the Berends-Giele current. In particular, the
Berends-Giele current is defined as

Jµ
P = JεµK ◦ bcs(P). (7.4.3)
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As an example, the color-stripped Berends-Giele polarization currents
up to multiplicity four would read

Jµ
1 = ε

µ
1 ,

Jµ
12 =

ε
µ

[1,2]

s12
,

Jµ
123 =

ε
µ

[[1,2],3]

s12s123
+

ε
µ

[1,[2,3]]

s23s123
,

Jµ
1234 =

ε
µ

[[[1,2],3],4]

s12s123s1234
+

ε
µ

[[1,[2,3]],4]

s123s1234s23
+

ε
µ

[[1,2],[3,4]]

s12s1234s34
+

ε
µ

[1,[[2,3],4]]

s1234s23s234

+
ε

µ

[1,[2,[3,4]]]

s1234s234s34
. (7.4.4)

In these expressions, the multiparticle polarization fields ε
µ
P in first

position in each line represent respectively the numerators computed
earlier in (7.3.5), (7.3.11) and (7.3.16) respectively. Clearly, this cannot
be the end of the story, as other numerators with different nested
bracket structures, i.e. corresponding to different diagrams with re-
spect to figure 7.6, are present. However, this is not a problem at all,
as the multiparticle polarizations ε

µ
P satisfy the GJI! In other words,

we can use the very same symmetries of the commutators within each
nested bracket that labels the numerators. In particular, it is easy to
obtain

ε
µ

[1,[2,3]] = −ε
µ

[[2,3],1], (7.4.5)

and

ε
µ

[[1,[2,3]],4] = −ε
µ

[[[2,3],1],4]

ε
µ

[1,[[2,3],4]] = −ε
µ

[[[2,3],4],1]

ε
µ

[1,[2,[3,4]]] = ε
µ

[[[3,4],2],1]

ε
µ

[[1,2],[3,4]] = ε
µ

[[[1,2],3],4] − ε
µ

[[[1,2],4],3], (7.4.6)

so that these multiparticle polarization fields in (7.4.4) are obtained
from the formulae in (7.3.5), (7.3.11) and (7.3.16) by a simple relabeling.
At this point, however, we should perhaps emphasize that the way of
representing the color-stripped Berends-Giele polarization currents
in (7.4.3) is always possible regardless of whether or not the multi-
particle polarization fields ε

µ
P satisfy the GJI. When they do, as it is

the case in the present discussion, we can exploit these identities to
reduce the computational effort and obtain the full current from a
single numerator ε

µ
P. We note, moreover, that the GJI satisfied by the

multiparticle polarization fields ε
µ
P translate directly into the shuffle

symmetry Jµ
Q�R = 0 of the currents in (7.4.3), as expected from the

relation obtained earlier in (4.1.10). In section 7.3 we have carried out
the computation of the rank-five multiparticle polarization ε

µ

[[[[1,2],3],4],5].
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For brevity, we won’t report here the full Berends-Giele current associ-
ated to such numerator, as it can be easily obtained combining (7.3.22),
(7.4.3) and GJI’s when needed.

Now that we have an explicit form of the color-stripped Berends-
Giele polarization currents, the next task is to write down the color-
stripped perturbiner expansion. This is a simple matter: we just set it
to be generating series

Aµ(x) = ∑
P

Jµ
PekP·xTaP , (7.4.7)

where the sum is performed over the set of non-empty words P =

12 . . . n with different length. It is important to note that the shuffle
symmetry satisfied by the constituent currents Jµ

P guarantees that the
generating series (7.4.7) is a Lie algebra-valued field. This expansion
does not come directly from the Yang-Mills action, since in our case
we have only trivalent vertices with no use of auxiliary fields.

To complete our discussion we must also remember how the color-
stripped Berends-Giele polarization currents Jµ

P are related to the
scattering amplitudes in Yang-Mills theory. At tree level, the color-
ordered partial amplitude of n gluons is determined through the
Berends-Giele formula

An(1, 2, . . . , n) = s12···(n−1) Jµ

12···(n−1) Jnµ, (7.4.8)

as already seen in (4.1.6). The factor s12···(n−1) is inserted to cancel
the off-shell propagator inside J12···(n−1). Now that we are assuming
momentum conservation and have on-shell external legs, there are
off-shell terms that cancel out, e.g. the ones of the form kµ

PhP at the
end of each polarization. Finally it may be remarked that, by virtue
of the shuffle symmetry, the partial amplitudes in the form of (7.4.8)
satisfy the Kleiss-Kuijf relations [85] —see (3.2.8).

7.4.2 Color-Dressed Berends-Giele Currents

Now we turn our attention to obtaining the color-dressed Berends-
Giele polarization currents from the multiparticle polarization fields ε

µ
P.

These type of currents, suitable for the computation of full Yang-Mills
amplitudes, have been presented earlier in section 4.2.2, where the
perturbiner methods have been used. The procedure to compute the
color-dressed Berends-Giele currents will be similar to the one showed
in the previous section, with some small, but important, changes. In
the first place, we need to modify the color-stripped Berends-Giele
map (7.4.1) by a color-dressed version of it, which we write as bcd.
Here we borrow the prescription already depicted in [132]. Namely,
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we define bcd as the map acting on all ordered words and determined
recursively by

bcd(i) = i,

bcd(P) =
1

2sP
∑

P=Q∪R
[bcd(Q), bcd(R)], (7.4.9)

where ∑P=Q∪R denotes the sum over all possible ways of distributing
the letters of the ordered word P into non-empty ordered words Q and
R. We remark that the factor of 2 in the denominator can be dropped
if we impose the condition that |Q| ≥ |R|. The decomposition of
type ∑P=Q∪R has already been encountered in the recursion (4.2.29)
from color-dressed perturbiner, where we have checked that such
decomposition correctly reproduces the locality structure of the full
Yang-Mills amplitude. In the second place, for each ordered word
P = i1i2 · · · in of length n, we employ the notation ca

P to indicate the
product of color factors determined by

ca
P = f̃

b
ai1 ai2

f̃
c

bai3
· · · f̃

e
dain−1

f̃ a
eain

, (7.4.10)

with the understanding that ca
i = δa

ai
. We further put

ca
[P,Q] = f̃ a

bc cb
Pcc

Q (7.4.11)

for any pair of ordered words P and Q. In the third place, given two
arbitrary labeled objects UP and VP, we define the replacement of
ordered words by the product of such objects as

JU ⊗VK ◦ P = UPVP. (7.4.12)

By making use of the foregoing, one can show that we can write the
color-dressed Berends-Giele polarization currents in the form

Jaµ
P = Jca ⊗ εµK ◦ bcd(P). (7.4.13)

As we pointed out in the previous section, the multiparticle polar-
ization fields ε

µ
P entering in this representation of the color-dressed

Berends-Giele currents are not restricted to satisfy the GJI. When they
do, as it is the case in the present discussion, we see that such identities
mirror the GJI satisfied by the color factor ca

P. Hence, we are led to
the conclusion that the factorization of the color-dressed Berends-Giele
polarization currents given in (7.4.13) is a realization of the color-
kinematics duality. In the next chapter, we will see that in terms of
this factorization, the double-copy prescription is straightforward to
phrase.

We shall now proceed to write down explicitly the color-dressed
Berends-Giele polarization currents up to multiplicity four, in order
to familiarize ourselves with formula (7.4.13). We first consider the
single-particle case in which P = 1. Then we at once obtain

Jaµ
1 = δa

a1
ε

µ
1 . (7.4.14)
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Next we consider the two-particle case in which P = 12. In this case,
the only possible way of distributing the letters is (Q, R) = (1, 2), and
thus we find that color-dressed Berends-Giele polarization current Jaµ

12
acquires the form

Jaµ
12 =

ca
[1,2]ε

µ

[1,2]

s12
, (7.4.15)

with color factor ca
[1,2] = f̃ a

a1a2 and two-particle polarization field ε
µ

[1,2]
given by (7.3.5). Let us next take up the three-particle case in which
P = 123. In this case, the possible ways of distributing the letters that
contribute to the sum are (Q, R) = (12, 3), (13, 2), (23, 1). Therefore,
after a straightforward calculation making use of the recursion (7.4.9)
we obtain for the color-dressed Berends-Giele polarization current Jaµ

123
the formula

Jaµ
123 =

ca
[[1,2],3]ε

µ

[[1,2],3]

s12s123
+

ca
[[1,3],2]ε

µ

[[1,3],2]

s13s123
+

ca
[[2,3],1]ε

µ

[[2,3],1]

s23s123
, (7.4.16)

with color factors ca
[[1,2],3] = f̃ b

a1a2 f̃ a
ba3

, ca
[[1,3],2] = f̃ b

a1a3 f̃ a
ba2

, ca
[[2,3],1] =

f̃ b
a2a3 f̃ a

ba1
and three-particle polarization fields obtained by (7.3.11)

after relabeling when needed. Finally, we consider the four-particle
case in which P = 1234. In this case, the possible ways of distributing
the letters that contribute to the sum are (Q, R) = (123, 4), (124, 3),
(134, 2), (234, 1), (12, 34), (13, 24), (23, 14). By analogy with the calcu-
lation leading to (7.4.16), we find that the color-dressed Berends-Giele
polarization current Jaµ

1234 may be represented in the form

Jaµ
1234 =

ca
[[[1,2],3],4]ε

µ

[[[1,2],3],4]

s12s123s1234
+

ca
[[[1,2],4],3]ε

µ

[[[1,2],4],3]

s12s124s1234
+

ca
[[[1,3],4],2]ε

µ

[[[1,3],4],2]

s13s134s1234

+
ca
[[[2,3],4],1]ε

µ

[[[2,3],4],1]

s23s234s1234
+

ca
[[[1,3],2],4]ε

µ

[[[1,3],2],4]

s13s123s1234
+

ca
[[[1,4],2],3]ε

µ

[[[1,4],2],3]

s14s124s1234

+
ca
[[[1,4],3],2]ε

µ

[[[1,4],3],2]

s14s134s1234
+

ca
[[[2,3],1],4]ε

µ

[[[2,3],1],4]

s23s123s1234
+

ca
[[[2,4],1],3]ε

µ

[[[2,4],1],3]

s24s124s1234

+
ca
[[[2,4],3],1]ε

µ

[[[2,4],3],1]

s24s234s1234
+

ca
[[[3,4],1],2]ε

µ

[[[3,4],1],2]

s34s134s1234
+

ca
[[[3,4],2],1]ε

µ

[[[3,4],2],1]

s34s234s1234

+
ca
[[1,2],[3,4]]ε

µ

[[1,2],[3,4]]

s12s34s1234
+

ca
[[1,3],[2,4]]ε

µ

[[1,3],[2,4]]

s13s24s1234
+

ca
[[1,4],[2,3]]ε

µ

[[1,4],[2,3]]

s14s23s1234
.

(7.4.17)

Here the color factors are easily determined from (7.4.10) and (7.4.11)
as

ca
[[[1,2],3],4] = f̃ b

a1a2
f̃ c
ba3

f̃ a
ca4

, ca
[[[1,2],4],3] = f̃ b

a1a2
f̃ c
ba4

f̃ a
ca3

,

ca
[[[1,3],4],2] = f̃ b

a1a3
f̃ c
ba4

f̃ a
ca2

, ca
[[[2,3],4],1] = f̃ b

a2a3
f̃ c
ba4

f̃ a
ca1

,

ca
[[[1,3],2],4] = f̃ b

a1a3
f̃ c
ba2

f̃ a
ca4

, ca
[[[1,4],2],3] = f̃ b

a1a4
f̃ c
ba2

f̃ a
ca3

,

ca
[[[1,4],3],2] = f̃ b

a1a4
f̃ c
ba3

f̃ a
ca2

, ca
[[[2,3],1],4] = f̃ b

a2a3
f̃ c
ba1

f̃ a
ca4

,
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ca
[[[2,4],1],3] = f̃ b

a2a4
f̃ c
ba1

f̃ a
ca3

, ca
[[[2,4],3],1] = f̃ b

a2a4
f̃ c
ba3

f̃ a
ca1

,

ca
[[[3,4],1],2] = f̃ b

a3a4
f̃ c
ba1

f̃ a
ca2

, ca
[[[3,4],2],1] = f̃ b

a3a4
f̃ c
ba2

f̃ a
ca1

,

ca
[[1,2],[3,4]] = f̃ b

a1a2
f̃ c
a3a4

f̃ a
bc , ca

[[1,3],[2,4]] = f̃ b
a1a3

f̃ c
a2a4

f̃ a
bc ,

ca
[[1,4],[2,3]] = f̃ b

a1a4
f̃ c
a2a3

f̃ a
bc . (7.4.18)

As for the four-particle polarization fields, keeping in mind the identi-
ties

ε
µ

[[1,2],[3,4]] = ε
µ

[[[1,2],3],4] − ε
µ

[[[1,2],4],3]

ε
µ

[[1,3],[2,4]] = ε
µ

[[[1,3],2],4] − ε
µ

[[[1,3],4],2]

ε
µ

[[1,4],[2,3]] = ε
µ

[[[1,4],2],3] − ε
µ

[[[1,4],3],2], (7.4.19)

they are all determined by (7.3.16) with the necessary relabelings. For
brevity, the example of the color-dressed Berends-Giele polarization
current at a rank of five is included in appendix D.

Having obtained the expression (7.4.13) for the color-dressed Berends-
Giele polarization currents, we can of course then obtain the color-
dressed perturbiner expansion. This is simply given as the generating
series

Aaµ(x) = ∑
P

Jaµ
P ekP·x, (7.4.20)

where the sum is performed over the set of non-empty words P =

12 . . . n. Finally we remark that, despite we focused out attention on
the multiparticle polarization field ε

µ
P, a color-dressed perturbiner

expansion analogous to (7.4.20) can be obtained for the field strength:
using the numerators f µν

P in the BCJ gauge obtained in section 7.3,
we can compute color-dressed Berends-Giele field strength current
associated with the multiparticle field strength.

Before leaving this section, let us comment on the role the color-
dressed Berends-Giele polarization currents Jaµ

P play in the determi-
nation of the scattering amplitudes for Yang-Mills theory. As seen in
(4.2.35), the Berends-Giele formula can be employed to obtain the full,
or color-dressed, n-point amplitude

Atree
n = s12···(n−1) Jaµ

12···(n−1) Jnaµ (7.4.21)

where again we assume momentum conservation. It is also interesting
to note that we may rewrite the amplitude (7.4.21) as

Atree
n = ∑

j∈ trivalent

cjnj

∏ij
sij

. (7.4.22)

where the sum goes over all (2n− 5)!! trivalent trees with propagators
sij associated to each internal edge i of the diagram. This corresponds
exactly to the representation introduced in (3.1.6).
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7.5 final remarks

In this chapter we introduced a new approach for building Berends-
Giele currents by making use of the Bern-Kosower formalism and a
special pinch contribution to n-gluon amplitudes. By employing the
multiparticle fields technology and combining them with the string-
based rules, we have computed Berends-Giele numerators up to the
five-point case. Interestingly, we have shown that the latter obey the
GJI required by BCJ gauge, i.e. they satisfy color-kinematics duality.
The most attractive feature of our formalism is that it never becomes
necessary to determine gauge transformation terms to modify the
numerators, as they appear naturally in the desired gauge. This is a
significant advantage of our construction over others in literature, as
seen in [16, 98, 127]. See [133] for comparison with a different technique
recently appeared in literature. In turn, the multiparticle polarization
vectors can be used as numerators of Berends-Giele currents, and,
exploiting suitable symmetry properties, full tree-level Yang-Mills
amplitudes are obtained from a single basic calculation.

In the following chapter, we will use an analogous approach to
show that the multiparticle generalization of the gravity polarization
tensor arise naturally as product of multiparticle fields, if we consider
the Bern-Dunbar-Shimada formalism for one-loop gravity amplitudes.
This will allow us to establish a new double-copy prescription for
Berends-Giele currents in gravity.



8
D O U B L E C O P Y F R O M T H E S T R I N G - I N S P I R E D
F O R M A L I S M

The relation for the gravity polarization tensor as the tensor product
of two gluon polarization vectors has been well-known for a long time,
but a version of this relation for multiparticle fields is presently still
not known. Using the results presented in the previous chapter, we
show that the multiparticle generalization of the gravity polarization
tensor as product of multiparticle fields arise naturally in the Bern-
Dunbar-Shimada formalism for one-loop gravity amplitudes, which is
the gravitational counterpart of the Bern Kosower formalism described
earlier. This allows us to formulate a revisited prescription for double-
copy at the level of gravity Berends-Giele currents, and to obtain
the gravitational Berends-Giele currents explicitly in the BCJ gauge.
Results discussed in this chapter are published in [129].

8.1 multiparticle polarization tensors from the bern-
dunbar-shimada formalism

In the previous chapter we have presented an efficient way to construct
Berends-Giele currents packed in the BCJ gauge, that is, they naturally
display color-kinematics duality. This was made explicit by identifying
Berends-Giele numerators, called multiparticle polarizations, which
satisfy the generalized Jacobi identities (GJI). In order to extend such
constructions to gravity, a possible strategy is to rely upon the well-
known perturbative gauge-gravity duality. In chapter 3, we have seen
some examples of how this duality is realized in field theory and how
this can be related to established results in string theory. In particular,
in section 3.6 we have seen that the gauge-gravity duality can be
understood as a consequence of open-closed duality of string theory.
At the perturbative string level, the latter gives rise to the KLT relations
between open string amplitudes and closed string amplitudes. In the
particle limit of string theory α′ → 0, it leads to relations between
tree-level graviton amplitudes and tree-level gluon amplitudes in
Yang-Mills theories, which are often summarized as

Gravity = (Gauge Theory)2. (8.1.1)

As seen in section 3.5, Bern, Carrasco and Johansson discovered a
direct way of constructing gravity amplitudes from gauge theory am-
plitudes after organizing the latter in terms of cubic diagrams only and
in such a way that the amplitude numerators respect color-kinematics
duality —see (3.3.1)-(3.3.2). The great advantage of this representation

127
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is that the calculation of the associated gravity amplitudes is automatic:
through the so-called double copy prescription, these are obtained in
terms of the gauge theory information simply by replacing the color
factors by another copy of the kinematic numerators and summing
over the same cubic diagrams —see (3.5.2).

Earlier in this manuscript, we have deeply examined the Bern-
Kosower formalism for the one-loop gluon scattering amplitudes. In
particular, in the previous chapter we have investigated the pinching
procedure of the Bern-Kosower formalism, that allows us to construct
the reducible parts of the one-loop amplitudes from the irreducible
ones at the level of the Feynman.-Schwinger integrands. We have
implemented the pinching procedure with the introduction of a differ-
ential operator, the pinch operator defined in (7.1.4), and we have used
it in a suitable way on the Bern-Kosower integrand in order to extract
the multiparticle field strengths and polarizations that in this way
appear naturally in the BCJ gauge. Using these numerators, we have
been able to write down specific Berends-Giele currents, that in turn
provide Yang-Mills amplitudes that naturally display color-kinematics
duality.

As mentioned few lines above, in such a representation gravity am-
plitudes can be obtained on the spot using double copy, but we want
to do more. Specifically, we consider now the Bern-Dunbar-Shimada
formalism, introduced in section 2.3.5 as a double copy extension
to gravity of the Bern-Kosower string-based rules, that takes origin
from the decomposition of the closed string modes into left-movers
and right-movers. Here we want to use the same algebraic tools with
respect to the gluonic case in order to extract the multiparticle polariza-
tion tensor for gravity and establish a revised double-copy prescription
at the level of the Berends-Giele currents within the perturbiner ap-
proach.

As point of departure, we first briefly discuss a systematic proce-
dure, exactly analogous to the one described in section 7.2, to ob-
tain the multiparticle polarization fields on the gravity side from the
Bern-Dunbar-Shimada formalism for one-loop graviton amplitudes. In
particular, we reconsider the symmetric partial integration algorithm
and the Bern-Dunbar-Shimada rules explained in sections 2.3.4 and
2.3.5 respectively. In the latter, we have mentioned few extra details
that have to be considered when symmetric IBP is applied to the
Bern-Dunbar-Shimada formalism. In particular, it is generally not
possible to remove all the double derivatives G̈ij and ¨̄Gij through inte-
gration by parts without generating extra terms involving the function
Hij = H(τi − τj), that represent the coupling of the left- and right-
movers through the zero mode of the string. However, this is not a
problem at all, as we can order the integrand according to the powers
of Hij: from this, the part of the integrand containing no Hij’s can still
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be factorized into the permutation invariant polynomial Q̄n( ˙̄G)Qn(Ġ).
The latter can be understood as the double copy generalization of the
polynomial Qn(Ġ), and comes into play when left- and right-movers
conspire for gravity calculations. In addition, just as in (7.1.4) in the
previous chapter, where we have associated for two adjacent legs i and
j with i < j a pinch operator, we may likewise define a double pinch
operator acting on Q̄n( ˙̄G)Qn(Ġ) as

D̄ijDijQ̄n( ˙̄G)Qn(Ġ) =

(
∂

∂ ˙̄Gij
Q̄n( ˙̄G)

∣∣∣∣ ˙̄Gij=0
˙̄Gjk→ ˙̄Gik

)(
∂

∂Ġij
Qn(Ġ)

∣∣∣∣Ġij=0
Ġjk→Ġik

)
.

(8.1.2)
Note that this new double pinch operator agrees with the replacement
rule (2.3.50) provided by the BDS formalism. Moreover, as in (7.1.4),
we are omitting the propagators in the pinching operator —these
will be recovered later in the chapter. It is easy to see that the above
double pinch operator is identical to the one for Yang-Mills applied
independently to both the left- and right-mover parts of the integrand
expression.

Now our goal is to find the multiparticle polarization tensors by
iterated action of double pinch operators. Here we may borrow from
the analysis carried out in the Yang-Mills case in the previous chapter,
where we have learned that the part of the polynomial Qn(Ġ) rele-
vant to the multiparticle polarizations is the (n− 2)-tail. This makes
it feasible in the present situation to also consider the (n − 2)-tail
T̄(1, 2, . . . , n − 2)T(1, 2, . . . , n − 2). Applying the double pinch oper-
ator consecutively n− 2 times to the latter in an analogous way to
(7.2.6), one finds

D̄1(n−1)D1(n−1)D̄1(n−2)D1(n−2) · · · D̄13D13D̄12D12

T̄(1, . . . , n− 2)T(1, . . . , n− 2) = ε̄
µ

12···(n−2)ε
ν
12···(n−2)k(n−1)µ. (8.1.3)

This relation ensures that the quantity ε̄
µ

12···(n−2)ε
ν
12···(n−2) exactly de-

scribes the multiparticle polarization tensor, as we have intuitively
understood in the Yang-Mills case in (7.2.8). We may also remark that,
by construction, each of the individual factors ε̄

µ

12···(n−2) and εν
12···(n−2)

satisfies the generalized Jacobi identity of order n− 2 in 1, 2, . . . , n− 2.
In other words, we can identify

ε̄
µ

12···(n−2)ε
ν
12···(n−2) ≡ ε̄

µ

[[···[1,2],··· ],(n−2)]ε
ν
[[···[1,2],··· ],(n−2)] (8.1.4)

It is trivial to specify that this relation can exactly be identified with
the square of the Yang-Mills multiparticle polarization fields derived
upon using (7.2.6). Specific examples of multiparticle polarization
tensors can be carried out simply by considering double copy versions
of the formulae in (7.3.5), (7.3.11) and (7.3.16) at rank two, three and
four respectively.
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One further thing to be noted is this. In our preliminary discussion
of the Bern-Dunbar-Shimada formalism, we indicated that when bring-
ing into play the pinching rules we no longer have an ordering of the
tree legs. This means that the tree attached to the loop is obtained by
taking all possible pinches with all the possible orderings of the legs,
which is an exceedingly tedious and onerous task. The main point
to be stressed in connection with (8.1.3) is that we may infer directly
the existence of a double-copy version of the Berends-Giele polarization
currents: using the multiparticle polarization tensors in (8.1.3) as the
numerators of a new gravitational Berends-Giele current, we can cir-
cumvent the need to determine the contribution of the various trees
directly using the pinching procedure.

8.2 double-copy perturbiner expansion

In the present section, we will discuss all the underlying principles
that are necessary for treating the double-copy polarization currents
and the corresponding perturbiner expansion. In the previous section,
we have used the double pinch operator to provide a recipe for the
computation of multiparticle polarization tensors in (8.1.3). Following
the procedure in section 7.4, we use these as numerators within a re-
vised prescription for gravitational Berends-Giele currents. Borrowing
the color-dressed Berends-Giele map from (7.4.9), we can use it to
correctly reproduce the locality structure of the gravity currents. Note
that the color-stripped Berends-Giele map from (7.4.1) is not suitable
for this task, as it only reproduces the kinematic poles that appear in
a color-ordered amplitude. This is not the case for gravity amplitudes,
where all the possible orderings of the external legs have to be consid-
ered: thus, the map in (7.4.9) is the correct way to proceed. Now, we
have to point out the main difference in our discussion with respect
to Yang-Mills calculations: in (7.4.13) we have constructed currents
by dressing the kinematic poles with the corresponding numerators
and color factors. For gravity Berends-Giele currents, the notion of
color factor disappears and we build them by dressing numerators
with a suitable locality structure. To be more precise, the multiparticle
polarization tensors of type (8.1.4) are exactly the numerators that
enter in the gravity Berends-Giele currents. Taking advantage of the
map (7.4.9), we express a double-copy polarization current, which we
denote by G

µν
P , in the form

G
µν
P = Jε̄µ ⊗ ενK ◦ bcd(P). (8.2.1)

Examining the expression for the color-dressed Berends-Giele po-
larization current (7.4.13), it is readily verified that the double-copy
polarization currents may be obtained by replacing the color factor
ca with another copy of the multiparticle polarization field ε̄µ. This
provides a realization of the off-shell double-copy that arises naturally
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in the string-based formalism, as an alternative to previous approaches
[106, 134] that mimic the KLT relations adapting them to Berends-Giele
currents.

As some examples, bringing to mind (7.4.14), (7.4.15), (7.4.16) and
(7.4.17), the first instances of the double-copy polarization current up
to multiplicity four are given by

G
µν
1 = ε̄

µ
1εν

1, (8.2.2)

G
µν
12 =

ε̄
µ

[1,2]ε
ν
[1,2]

s12
, (8.2.3)

G
µν
123 =

ε̄
µ

[[1,2],3]ε
ν
[[1,2],3]

s12s123
+

ε̄
µ

[[1,3],2]ε
ν
[[1,3],2]

s13s123
+

ε̄
µ

[[2,3],1]ε
ν
[[2,3],1]

s23s123
, (8.2.4)

G
µν
1234 =

ε̄
µ

[[[1,2],3],4]ε
ν
[[[1,2],3],4]

s12s123s1234
+

ε̄
µ

[[[1,2],4],3]ε
ν
[[[1,2],4],3]

s12s124s1234
+

ε̄
µ

[[[1,3],4],2]ε
ν
[[[1,3],4],2]

s13s134s1234

+
ε̄

µ

[[[2,3],4],1]ε
ν
[[[2,3],4],1]

s23s234s1234
+

ε̄
µ

[[[1,3],2],4]ε
ν
[[[1,3],2],4]

s13s123s1234
+

ε̄
µ

[[[1,4],2],3]ε
ν
[[[1,4],2],3]

s14s124s1234

+
ε̄

µ

[[[1,4],3],2]ε
ν
[[[1,4],3],2]

s14s134s1234
+

ε̄
µ

[[[2,3],1],4]ε
ν
[[[2,3],1],4]

s23s123s1234
+

ε̄
µ

[[[2,4],1],3]ε
ν
[[[2,4],1],3]

s24s124s1234

+
ε̄

µ

[[[2,4],3],1]ε
ν
[[[2,4],3],1]

s24s234s1234
+

ε̄
µ

[[[3,4],1],2]ε
ν
[[[3,4],1],2]

s34s134s1234
+

ε̄
µ

[[[3,4],2],1]ε
ν
[[[3,4],2],1]

s34s234s1234

+
ε̄

µ

[[1,2],[3,4]]ε
ν
[[1,2],[3,4]]

s12s34s1234
+

ε̄
µ

[[1,3],[2,4]]ε
ν
[[1,3],[2,4]]

s13s24s1234
+

ε̄
µ

[[1,4],[2,3]]ε
ν
[[1,4],[2,3]]

s14s23s1234
.

(8.2.5)

For brevity, the double-copy polarization current at rank five is in-
cluded in appendix D. We reiterate that the crucial step in the double-
copy procedure we have just argued is the construction of the mul-
tiparticle polarization tensor ε̄

µ
Pεν

P, where the single fields separately
satisfy the GJI as pointed out by color-kinematics duality. In particular,
all the fields in the currents above can be obtained from the canonical
numerators (7.3.5), (7.3.11) and (7.3.16) using symmetry properties.

Since we have already obtained the double-copy polarization cur-
rents we can now readily obtain the double-copy perturbiner expan-
sion, which is nothing but the generating series

Gµν(x) = ∑
P
G

µν
P ekP·x, (8.2.6)

where the sum is performed over the set of non-empty words P =

12 . . . n. Like in the Yang-Mills case, (8.2.6) is not a solution of the Ein-
stein field equations, for it has been “strictified” to include exclusively
cubic interactions.

Going on-shell now, it remains to say a word about the scattering
amplitudes in the double-copy theory. Recalling the color-dressed
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amplitude (7.4.21), the Berends-Giele formula for the n-point gravity
amplitude reads

Mtree
n = s12···(n−1)G

µν

12···(n−1)Gnµν. (8.2.7)

Not surprisingly, the previous expression takes the well-known form
for gravity amplitudes in its double-copy version

Mtree
n = ∑

j∈ trivalent

n̄jnj

∏ij
sij

, (8.2.8)

exactly as introduced in (3.5.3). We also checked our result up to
degree n = 5 for particular polarizations. At any rate, the outcome of
this approach is that we can calculate the amplitudes for the double-
copy theory in a relatively straightforward manner, without the need
for applying the pinching procedure multiple times to obtain the
local BCJ numerators. This attribute was not apparent in previous
approaches using the perturbiner method, since the generating series
of Berends-Giele currents is usually presented in its color-stripped
version for the BCJ gauge.

8.3 additional examples

Now that we found a prescription for the double-copy perturbiners,
let us apply it to other theories beyond Yang-Mills and gravity. In
principle it can be applied to any theory as soon as we guarantee
multiparticle fields in the BCJ gauge. One first example should be
the case where the BCJ gauge originally appeared, ten-dimensional
N = 1 super Yang-Mills in [100] (more recently from a new approach
in [135]), but for now we will restrict our presentation only to cases
without supersymmetry.

8.3.1 α′-Deformations

For the first example we will calculate the currents and amplitudes
for the deformations of general relativity that come from the α′ correc-
tions of the closed bosonic string, also referred to as GR+R2+R3. The
amplitudes for this theory were calculated using the KLT relations for
string theory [12, 136]. The action was found in [137] and it reads

S closed
bosonic

∼
∫

dDx
√

g
{

R− 2(∂µ φ)2 − 1
12

H2 +
α′

4
e−2φ

(
RµνλρRµνλρ

− 4RµνRµν + R2)+ α′2e−4φ

(
1
16

Rµν
αβRαβ

λρRλρ
µν

− 1
12

Rµν
αβRνλ

βρRλµ
ρα

)
+O(α′3)

}
, (8.3.1)

where here φ represents the dilaton and H = dB represents the field
strength of the B-field. The gauge field theory for the double-copy
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is the deformed Yang-Mills theory that comes from the low energy
limit of the open string. The action, compatible with color-kinematics
duality [138], is the following

SYM+F3+F4 =
∫

dDx tr
{

1
4

FµνFµν +
2α′

3
Fµ

νFν
λFλ

µ

+
α′2

4
[Fµν, Fλρ][Fµν, Fλρ]

}
, (8.3.2)

which has the following equations of motion in the Lorenz gauge,
∂µ Aµ = 0,

□Aλ = [Aµ, ∂µ Aλ] + [Aµ, Fµλ] + 2α′
{
[∇µFµν, Fν

λ] + [Fµν,∇µFν
λ]
}

+ 2α′2
{[

[∇µFµλ, Fρσ], Fρσ
]
+
[
[Fµλ,∇µFρσ], Fρσ

]
+
[
[Fµλ, Fρσ],∇µFρσ

]}
. (8.3.3)

In [98], the authors conducted a detailed analysis for the calculation
of the currents in this gauge using the perturbiner approach [106, 107,
139]. Then, they applied the non-linear gauge transformation studied
in [100] in order to obtain currents in the BCJ gauge. In general the
expressions for the α′-deformed multiparticle polarizations have the
following structure

aµ
P = ε

µ
P + α′ε

(1)µ
P + α′2ε

(2)µ
P . (8.3.4)

We invite the reader to have a look at the explicit expressions in [98].
Our double-copy perturbiner for the α′-deformation of general rela-

tivity comes out to be

G(α′)µν(x) = ∑
P
G
(α′)µν
P eikP·x, (8.3.5)

where the Berends-Giele currents is given by

G
(α′)µν
P = Jaµ ⊗ āνK ◦ bcd(P). (8.3.6)

Naturally, in complete analogy with (8.2.7), the corresponding ampli-
tude reads

M
(α′)tree
n = s1...n−1G

(α′)µν
1...n−1G

(α′)
nµν. (8.3.7)

This has been checked using the explicit expressions for aµ
P from [98].

8.3.2 Zeroth-Copy

Another example whose perturbiner can be obtained in a very straight-
forward manner with our approach is the one for the bi-adjoint scalar
model. For this model, originally found in [140], we have a scalar
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field that takes values in the tensor product SU(N)⊗ SU(N′), and
is expressible in terms of the generators as Φ = Φaa′Ta ⊗ T′a

′
. The

corresponding action takes the form

Sbi-adjoint =
∫

dDx
{
− 1

2 Φaa′□Φaa′ +
1
3!

f̃ abc f̃ ′a
′b′c′

Φaa′Φbb′Φcc′

}
.(8.3.8)

Its Berends-Giele currents were found for the first time in [107] in
the color-stripped version and the color-dressed version in [106], both
cases using the perturbiner approach. Here we can obtain it simply
by applying the zeroth-copy [141], now in its analogue perturbiner
version. Therefore, for the bi-adjoint perturbiner we have

Φaa′(x) = ∑
P

ϕaa′
P eikP·x, (8.3.9)

where for the Berends-Giele currents read

ϕaa′
P = Jca ⊗ c′a

′
K ◦ bcd(P) (8.3.10)

The expressions for the currents are exactly like the ones in (8.2.2) but
replacing the polarizations by the color factors presented in section
7.3. The color-dressed amplitudes can also be calculated directly using
the Berends-Giele formula in (8.2.7). In [131], a different method of
constructing the Berends-Giele currents in (8.3.10) is presented, which
involves the use of scalar products of words.

8.4 final remarks

In this chapter, we have extended the construction presented in chapter
(7) to build multiparticle polarization tensors from the full pinching
of the tails in Bern-Dunbar-Shimada formalism. As in the Yang-Mills
case, the polarization tensors can be used as numerators of gravita-
tional Berends-Giele currents. This allowed us to present a revised
prescription for the off-shell double-copy, that has applications to
theories beyond the ones that we can represent by the infinite string
tension limit.

This chapter ends the part of the thesis dedicated to the results of
the thesis. Throughout, we have made use of the worldline formalism
as a primary tool for various calculations, ranging from computing
dressed propagators in curved spacetime scalar QED to exploring
the recent color-kinematics duality and double copy. In this journey,
We hope to have demonstrated to the reader the potential of the
worldline approach in enhancing calculations in conventional quantum
field theory, and also the important role that it can have for the
advancements of more recent techniques in the study of scattering
amplitudes.
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E P I L O G U E

In this manuscript we have presented various results in scattering
amplitudes in quantum field theory. Thanks to techniques acquired
from the worldline, or string-inspired, formalism, we have been able
to carry out different computations with interesting insights in QED,
gauge theories and gravity.

In the first part we have described a novel worldline approach to
the computation of the tree level scattering amplitudes associated to
the scalar line coupled to electromagnetism and gravity. In particular,
we have provided a convenient parametrization for the graviton polar-
ization and a replacement rule, which allowed us to easily compute
full amplitudes with an arbitrary number of photons and one graviton.
The on-shell transversality of the amplitudes was explicitly checked.

A priori, our technique can be as well implemented to compute
amplitudes with an arbitrary number of gravitons. However, in that
case more care is needed in the treatment of chains of contractions
between the Lee-Yang ghost fields that represent the non trivial mea-
sure [110, 142]: the implementation of this generalization is a task
for future work. On the other hand amplitudes with gravitons have
always been the subject of extensive studies. In particular, theorems
which involve gravitons with low momentum have long been analyzed
[143] and, in the recent past, various soft-graviton theorems have been
studied [144], due to their connections to the infrared structure of
gauge theory and gravity —see [145]. The present results intend to
provide a novel approach towards the computation of amplitudes
with gravitons, which may shed new light on the structure of such
quantities.

Later in the manuscript, we have used the aforementioned approach
for the computation of the radiative one-loop correction to the scalar-
scalar-graviton vertex in arbitrary dimension. This has been obtained
by sewing two external photons in an arbitrary covariant gauge. This
procedure has been possible since the worldline formalism is an off-
shell approach, and the external legs in a given amplitude can be
sewed to provide loop contributions. In particular, we have computed
the different diagrams that build the radiative one-loop correction
to the scalar-scalar-graviton vertex, and our construction has been
checked by verifying the on-shell transversality. In the near future,
we aim to provide stronger tests for the validity of the result by
constructing appropriate Ward identities for the off-shell gss vertex.
Furthermore, the study of renormalization and the calculation of the

137
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associated form factor are also on the agenda.

In the second part of the manuscript we have presented a novel method
of constructing Berends-Giele currents using the Bern-Kosower for-
malism and a specific pinch contribution to the n-gluon amplitudes.
Using the technology of multiparticle fields and combining them with
the string-based rules, we have computed Berends-Giele numerators
up to the five-point case, and we have shown that the latter obey
the GJI required by BCJ gauge, indicative of color-kinematics duality.
The most attractive feature of our formalism is that it never becomes
necessary to determine gauge transformation terms to modify the
numerators, as these appear naturally in the desired gauge. In turn,
the multiparticle polarization vectors can be used as numerators of
Berends-Giele currents, and, exploiting suitable symmetry properties,
full tree-level Yang-Mills amplitudes are obtained from a single basic
calculation. It can be argued that using these Berends-Giele currents
as words in generalized Lorentz cycles, and the associated multipar-
ticle polarization vectors in generalized tails, provides an extremely
attractive approach towards absorbing the effect of the Bern-Kosower
pinching procedure into multiparticle tensor structures. A possible
task in the future is to obtain along these lines a representation of the
one loop n-gluon amplitudes that would be ultracompact as well as
exhibit manifest color-kinematics duality.

We have also seen that double-copy arise quite naturally in the form
of multiparticle fields within the string-inspired formalism. Using a
similar construction to the Yang-Mills case, we have been able to build
multiparticle polarization tensors from the full pinching of the tails
in Bern-Dunbar-Shimada formalism. As in the Yang-Mills scenario,
the polarization tensors can be used as numerators of gravitational
Berends-Giele currents. This allowed us to presented a revisited pre-
scription for the off-shell double-copy, that has applications to theories
beyond the ones that we can represent by the infinite string tension
limit, as we have demonstrated with the examples of α′-deformed grav-
ity and the bi-adjoint scalar model. Previously, we have argued that
feeding the obtained multiparticle vectors back into the Bern-Kosower
formalism, can make the whole pinching procedure unnecessary. It is
not obvious whether this aspect of our approach can be generalized
to the gravity case, since here the existence of the cross terms seems
to start making a real difference. This task is left for future studies. A
possible application is the calculation of Berends-Giele currents for
gravity coupled to matter fields along the lines of [146, 147], that could
be compared with [148]. Another application for the near future is to
some cases of supergravity, where Berends-Giele currents have been
found for N = 1 Super-Yang-Mills in the BCJ gauge in [16, 127].
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a two-photon one-graviton scalar propagator

We use the master formula (5.1.16) to compute the two-photon one-
graviton scalar propagator, and the related irreducible part of the two-
photon one-graviton two-scalar amplitude, whose Feynman diagrams
are depicted in figure 10.1. It is described through

D(2,1)(p, p′; . . . ; ϵ, k0) = (−ie)2
(
−κ

4

) ∫ ∞

0
dT e−T(m2+p′2)

2

∏
i=0

∫ T

0
dτi

× e(p′−p)·(−k0τ0−k1τ1−k2τ2+iε0+iε1+iε2) ek0·k1|τ0−τ1|+k0·k2|τ0−τ2|+k1·k2|τ1−τ2|

× ei(ε1·k0−ε0·k1)sgn(τ0−τ1)+i(ε2·k0−ε0·k2)sgn(τ0−τ2)+i(ε2·k1−ε1·k2)sgn(τ1−τ2)

× e2
[

ε0·ε1δ(τ0−τ1)+ε0·ε2δ(τ0−τ2)+ε1·ε2δ(τ1−τ2)
]∣∣∣

m.l.
. (A1)

Firstly, let us consider contributions involving delta functions, which
are linked to seagull diagrams. We find it convenient to grade the
different contributions in terms of how many delta functions occur.
There is only one double-delta term —see the last diagram in figure
10.1, i.e.

E
(2,1)
2 = e2κ

∫ ∞

0
dT e−T(m2+p′2)

∫ T

0
dτ0 eτ0(p′2−p2) ε0 · ε1ε0 · ε2|m.l., (A2)

where the notation Ei specifies contributions to the worldline integrand
with a number i of δ-functions involved. Using (5.1.13) and (5.1.14)
and truncating over the external lines, the expression (A1) reduces to

E
(2,1)
2 = e2κ 2 (ε1ϵε2), (A3)

that represents the Feynman amplitude related to the diagram where
two photons and one graviton are emitted at the same point of the
scalar line. Note that, also for an arbitrary number n of photons, this
is the largest number of particles that can be emitted at the same point
of the scalar line together with a single graviton.

There are three terms with a single delta function —see the second
and third diagrams and their permutations in figure 10.1. These corre-
spond to the six Feynman diagrams where the emission of a pair of
particles (either two photons or one photon and the graviton) takes
place from the same point of the scalar line, and the remaining particle
emitted from another point on the line. Let us, for example consider
the term that involves δ(τ1− τ2), that corresponds to the third diagram

141
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p

k0 k1 k2

−p′
+

p

k0 k1 k2

−p′
+

p

k0 k1 k2

−p′
+

p

k0k1 k2

−p′
+ · · ·

Fig. 10.1: Irreducible contributions to the two-photon one-graviton amplitude.
The remaining terms in the sum of diagrams refer to permutations between
the photon lines and among the emission points.

in figure 10.1, and which yields the diagrams where two photons are
emitted at the same point. The integrand reads

E
(2,1)
1,1 = (−ie)2

(
−κ

4

)
ε1 · ε2

[
iε0 · (p′ − p− (k1 + k2)sgn(τ0 − τ1))

]2

× e(p−p′)·(k0τ0+(k1+k2)τ1)+k0·(k1+k2)|τ0−τ1|, (A4)

which provides two diagrams, according to whether τ1 < τ0 or τ0 < τ1.
After some straightforward algebra that corresponds to the Schwinger
integral parametrization of the diagrams, we obtain

E
(2,1)
1,1 = −2e2κε1 · ε2

[ (p′ϵp′)
m2 + (p′ + k0)2 +

(pϵp)
m2 + (p + k0)2

]
, (A5)

where we have truncated the external scalar lines. Similarly, the other
terms with single delta functions δ(τ0 − τ1) and δ(τ0 − τ2) give

E
(2,1)
1,2 = 2e2κ

[ ε1 · p (ε2ϵ(p′ − p− k1))

m2 + (p + k1)2 +
ε1 · p′ (ε2ϵ(p− p′ − k1))

m2 + (p′ + k1)2

+
ε2 · p (ε1ϵ(p′ − p− k2))

m2 + (p + k2)2 +
ε2 · p′ (ε1ϵ(p− p′ − k2))

m2 + (p′ + k2)2

]
.

(A6)

The full contribution to the worldline integrand from terms with one
single δ-funciton is given by the combination of (A5)-(A6), i.e.

E
(2,1)
1 = E

(2,1)
1,1 + E

(2,1)
1,2 . (A7)

The term without delta functions corresponds to the leftover six Feyn-
man diagrams where the two photons and the graviton and emitted
singly by the scalar line (the first diagram in figure 10.1 and its permu-
tations), six being the number of permutations of the three particles,
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which in the present worldline representation correspond to the dif-
ferent orderings of the three times τi. The integrand in this case reads

E
(2,1)
0 = (−ie)2

(
−κ

4

) ∫ ∞

0
dT e−T(m2+p′2)

∫ T

0
dτ0

∫ T

0
dτ1

∫ T

0
dτ2

× e(p′−p)·(−k0τ0−k1τ1−k2τ2) ek0·k1|τ0−τ1|+k0·k2|τ0−τ2|+k1·k2|τ1−τ2|

× ε1 · (p′ − p + k0sgn(τ0 − τ1)− k2sgn(τ1 − τ2))

× ε2 · (p′ − p + k0sgn(τ0 − τ2) + k1sgn(τ1 − τ2))

× 1
2
[
ε0 · (p′ − p− k1sgn(τ0 − τ1)− k2sgn(τ0 − τ2))

]2, (A8)

and yields

E
(2,1)
0 = 4e2κ

[ (p′ϵp′) ε1 · (p + k2) ε2 · p
((p + k2)2 + m2)((p′ + k0)2 + m2)

+ (1↔ 2)

+
(pϵp) ε1 · (p′ + k2) ε2 · p′

((p + k0)2 + m2)((p′ + k2)2 + m2)
+ (1↔ 2)

+
((p + k1)ϵ(p′ + k2)) ε1 · p ε2 · p′

((p + k1)2 + m2)((p′ + k2)2 + m2)
+ (1↔ 2)

]
. (A9)

Thus,

D
(2,1)
irred(p, p′; ε1, k1, ε2, k2; ϵ, k0) = E

(2,1)
0 + E

(2,1)
1 + E

(2,1)
2 (A10)

is the irreducible part of the two-scalar two-photon one-graviton ampli-
tude, that corresponds exactly to the expression presented in (5.1.23).

b transversality of the amplitudes with one graviton

and n ≤ 2 photons

Let us here check how the transversality of the graviton line explicitly
works for n ≤ 2. For the n = 0 amplitude of equation (5.1.20) we have

D(0,1)(p, p′; k0ξ, k0) =
κ

2
(p′ − p) · k0 (p′ − p) · ξ , (B1)

which vanishes on-sell because k0 = −(p + p′). For n = 1, using
on-shellness, the momentum conservation and the transversality con-
ditions k0µϵµν = kµεµ = 0, we have

D
(1,1)
red (p, p′; ε1, k1; k0ξ, k0) = −D(1,1)

irred(p, p′; ε1, k1; k0ξ, k0)

= eκ(p′ − p)µ

(
ε

µ
1k1 · ξ + kµ

0 ε1 · ξ
)

, (B2)

so that

D(1,1)(p, p′; ε1, k1; k0ξ, k0) = 0, (B3)

as expected.
The computation for the n = 2 case is of course more complicated.

However, let us sketch some details. An useful way to proceed is to
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identify different kind of terms in both the reducible and irreducible
parts of the amplitude, that must sum up to zero separately.

Let us first consider the part of the amplitude proportional to the
product ε1 · ε2. After performing the substitution described in equation
(5.2.10), and denoting the corresponding reducible and irreducible
contributions as D

ε1ε2
red and D

ε1ε2
irred, we obtain

D
ε1ε2
irred =− 2ε1 · ε2

p · k0
(p · k0 p · ξ)− 2ε1 · ε2

p′ · k0

(
p′ · k0 p′ · ξ

)
=− 2ε1 · ε2ξ · (p + p′), (B4)

D
ε1ε2
red =− 2ε1 · ε2

k1 · k0
(k1 · k0k1 · ξ)−

2ε1 · ε2

k2 · k0
(k2 · k0k2 · ξ) =

=− 2ε1 · ε2ξ · (k1 + k2) = 2ε1 · ε2ξ · (p + p′) = −Dε1ε2
irred, (B5)

where in the last line we have used the conservation of total energy-
momentum together with the transversality condition given in equa-
tion (5.2.10). Thus, we get

D
ε1ε2
irred +D

ε1ε2
red = 0, (B6)

as expected.
Similarly we could consider the part in the total amplitude propor-
tional to ε1 · ξ, and we indicate with D

ε1ξ
red and D

ε1ξ
irred respectively the

reducible and irreducible contributions. After some manipulations, we
obtain

D
ε1ξ
irred =

ε2 · p′
k2 · p′

p · k0ε1 · ξ + 2ε1 · ξε2 · k0 +
ε2 · p′
k2 · p′

(p + k1) · k0ε1 · ξ

+
ε2 · p
k2 · p

p′ · k0ε1 · ξ +
ε2 · p
k2 · p

(p′ + k1) · k0ε1 · ξ

=
ε2 · p′
k2 · p′

p · k0ε1 · ξ + 2ε1 · ξε2 · k0 −
ε2 · p′
k2 · p′

p · k1ε1 · ξ + ε1 · ξε2 · p′

+
ε2 · p
k2 · p

p′ · k0ε1 · ξ −
ε2 · p
k2 · p

p′ · k1ε1 · ξ + ε1 · ξε2 · p

=
ε2 · p′
k2 · p′

ε1 · ξ p · (k0 − k1) +
ε2 · p
k2 · p

ε1 · ξ p′ · (k0 − k1)

+ ε1 · ξε2 · (k0 − k1). (B7)

Notice that in the last equality we have exploited the conservation of
total energy-momentum, while in the second equality we have used
the relations

k0 · (p + k1) = −p · k1 + p′ · k2,

k0 · (p′ + k1) = −p′ · k1 + p · k2. (B8)
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The contribution coming from the reducible part of the amplitude is
obtained as

D
ε1ξ
red =

ε2 · p′
p′ · k2k0 · k1

ε1 · ξ(p · k1k0 · k1 − p · k0k0 · k1)

+ 2
(

ε1 · ξ
2k0 · k1

(k0 · k1ε2 · k1 − k0 · k1ε2 · k0)

)
+

ε2 · p
p · k2k0 · k1

ε1 · ξ(p′ · k1k0 · k1 − p′ · k0k0 · k1)

=− ε2 · p′
k2 · p′

ε1 · ξ p · (k0 − k1)−
ε2 · p
k2 · p

ε1 · ξ p′ · (k0 − k1)

− ε1 · ξε2 · (k0 − k1), (B9)

and the sum of the reducible and irreducible contribution vanishes,
that is

D
ε1ξ
irred +D

ε1ξ
red = 0. (B10)

By Bose symmetry the contributions proportional to ε2 · ξ can be
obtained from the latter with the replacements ε1 ↔ ε2 and k1 ↔ k2.
Now we are ready to write down all the remaining terms that enter
in the transversality expression for the total amplitude. We find it
convenient to organize them in terms of their different denominators,
which are scalar product of momenta. We thus use the notation D

pk
rem

to indicate those terms that have the common denominator p · k and
similarly with others. We have,

D
p′k2
rem =− ε2 · p′

p′ · k2
2p · ξε1 · (p + k0) +

ε2 · p′
p′ · k2

ε1 · k0 p · ξ

+
ε2 · p′
p′ · k2

ε1 · k0ξ · (p + k1) +
ε2 · p′
p′ · k2

2ε1 · pξ · (p + k1)

− ε2 · p′
p′ · k2

2p · ε1ξ · k1 −
ε2 · p′
p′ · k2

ε1 · k0ξ · k1 = 0 , (B11)

D
pk1
rem =− ε1 · p

p · k1
ε2 · k0ξ · (p + k1)−

ε1 · p
p · k1

2p′ · ξε2 · (p′ + k0)

+
ε1 · p
p · k1

ε2 · k0ξ · p′ − ε1 · p
p · k1

2ε2 · p′ξ · (p + k1)

+
ε1 · p
p · k1

2(p + k1) · ε2ξ · k2 +
ε1 · p
p · k1

ε2 · k0ξ · k2 = 0 , (B12)

D
p′k1
rem =− ε1 · p′

p′ · k1
2p · ξε2 · (p + k0) +

ε1 · p′
p′ · k1

p · ξε2 · k0

− ε1 · p′
p′ · k1

ε2 · k0ξ · (p′ + k1)−
ε1 · p′
p′ · k1

2ε2 · pξ · (p′ + k1)

+
ε1 · p′
p′ · k1

2(p′ + k1) · ε2ξ · k2 +
ε1 · p′
p′ · k1

ε2 · k0ξ · k2 = 0 , (B13)
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D
pk2
rem =− ε2 · p

p · k2
2p′ · ξε1 · (p′ + k0) +

ε2 · p
p · k2

ε1 · k0ξ · p′

+
ε2 · p
p · k2

ε1 · k0ξ · (p′ + k1) +
ε2 · p
p · k2

2ε1 · p′ξ · (p′ + k1)

− ε2 · p
p · k2

2p′ · ε1ξ · k1 −
ε2 · p
p · k2

ε1 · k0ξ · k1 = 0 , (B14)

Dk0k1
rem =

ε1 · k0ξ · k1

k0 · k1
ε2 · (k0 + k1) +

ε1 · k0

k0 · k1
ε2 · p′ξ · k1 +

ε1 · k0

k0 · k1
ε2 · pξ · k1

=
ε1 · k0

k0 · k1
ξ · k1ε2 · (p + p′ + k0 + k1) ∝ ε2 · k2 = 0 , (B15)

Dk0k2
rem =

ε2 · k0ξ · k2

k0 · k2
ε1 · (k0 + k2) +

ε2 · k0

k0 · k2
ε1 · pξ · k2 +

ε2 · k0

k0 · k2
ε1 · p′ξ · k2

=
ε2 · k0

k0 · k2
ξ · k2ε1 · (p + p′ + k0 + k2) ∝ ε1 · k1 = 0 , (B16)

where ε i · ki = 0 and momentum conservation have used when needed.
Thus, all the different contributions sum up to zero and the transver-
sality of the total amplitude is proven, i.e.,

D(2,1) (p, p′; ε1, k1; ε2, k2; k0ξ, k0
)
= 0 . (B17)

c momentum integrals

In this appendix we list the integrals that we have introduced in
chapter 6 for the computation of the one-loop radiative correction to
the gss vertex from the worldline approach.

J(0)[p, p′] =
∫ dDℓ

(2π)D
1

ℓ2(m2 + (p′ + ℓ)2)(m2 + (p− ℓ)2)

J(1)µ[p, p′] =
∫ dDℓ

(2π)D
ℓµ

ℓ2(m2 + (p′ + ℓ)2)(m2 + (p− ℓ)2)

J(2)µν[p, p′] =
∫ dDℓ

(2π)D
ℓµℓν

ℓ2(m2 + (p′ + ℓ)2)(m2 + (p− ℓ)2)

J(3)µνρ[p, p′] =
∫ dDℓ

(2π)D
ℓµℓνℓρ

ℓ2(m2 + (p′ + ℓ)2)(m2 + (p− ℓ)2)

K(0)[p, p′] =
∫ dDℓ

(2π)D
1

(m2 + (p′ + ℓ)2)(m2 + (p− ℓ)2)

K(1)µ[p, p′] =
∫ dDℓ

(2π)D
ℓµ

(m2 + (p′ + ℓ)2)(m2 + (p− ℓ)2)

K(2)µν[p, p′] =
∫ dDℓ

(2π)D
ℓµℓν

(m2 + (p′ + ℓ)2)(m2 + (p− ℓ)2)

I(0)[p′] =
∫ dDℓ

(2π)D
1

ℓ2(m2 + (p′ + ℓ)2)

I(1)µ[p′] =
∫ dDℓ

(2π)D
ℓµ

ℓ2(m2 + (p′ + ℓ)2)
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I(2)µν[p′] =
∫ dDℓ

(2π)D
ℓµℓν

ℓ2(m2 + (p′ + ℓ)2)

H(0)[p′] =
∫ dDℓ

(2π)D
1

ℓ4(m2 + (p′ + ℓ)2)

H(1)µ[p′] =
∫ dDℓ

(2π)D
ℓµ

ℓ4(m2 + (p′ + ℓ)2)

H(2)µν[p′] =
∫ dDℓ

(2π)D
ℓµℓν

ℓ4(m2 + (p′ + ℓ)2)

L(0)[p, p′] =
∫ dDℓ

(2π)D
1

ℓ4(m2 + (p′ + ℓ)2)(m2 + (p− ℓ)2)

L(1)µ[p, p′] =
∫ dDℓ

(2π)D
ℓµ

ℓ4(m2 + (p′ + ℓ)2)(m2 + (p− ℓ)2)

L(2)µν[p, p′] =
∫ dDℓ

(2π)D
ℓµℓν

ℓ4(m2 + (p′ + ℓ)2)(m2 + (p− ℓ)2)

M(1)µ[k0, p] =
∫ dDℓ

(2π)D
ℓµ

ℓ2(k0 + ℓ)2(m2 + (p− ℓ)2)

M(2)µν[k0, p] =
∫ dDℓ

(2π)D
ℓµℓν

ℓ2(k0 + ℓ)2(m2 + (p− ℓ)2)

N(0)[k0, p] =
∫ dDℓ

(2π)D
1

(k0 + ℓ)2(m2 + (p− ℓ)2)

O(1)µ[k0] =
∫ dDℓ

(2π)D
ℓµ

ℓ2(ℓ+ k0)2

O(2)µν[k0] =
∫ dDℓ

(2π)D
ℓµℓν

ℓ2(ℓ+ k0)2 (C1)

The list of Feynman integrals presented is overcomplete. One can
easily observe this by examining the integral N(0)[k0, p], which can
be transformed into I(0)[p′] by making a simple change of variable,
ℓ → ℓ − k0. This example is simple, however, the complexity can
escalate when working with Feynman integrals. Feynman integrals are
essential components that arise in contemporary elementary particle
physics, and the calculations involving them currently result in the
need to evaluate millions of such integrals. A classical approach is to
apply integration by parts (IBP) relations [149] and reduce all integrals
to a smaller set, the so-called master integrals. Currently there is a
number of computer codes that can solve IBP relations and perform
Feynman integral reduction. In our work, we are making use of the
program FIRE6 [150], developed in Wolfram Mathematica. Currently,
the program has primarily been applied for the reduction of simple
integral forms, to verify the gauge-invariant nature of the one-loop
graviton amplitude in scalar QED, utilizing the expression of the vertex
found in equation (6.2.44). In future studies, we plan to consistently
employ the program to compute the form factor for the one-loop gss
vertex.
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Before applying the reduction to master integrals to specific contri-
bution, it is useful to introduce additional integrals

G(0)[p′] =
∫ dDℓ

(2π)D
1

(m2 + (p′ + ℓ)2)

G(1)µ[p′] =
∫ dDℓ

(2π)D
lµ

(m2 + (p′ + ℓ)2)

O(0)[k0] =
∫ dDℓ

(2π)D
1

ℓ2(ℓ+ k0)2 , (C2)

where, G(0)[p′] and O(0)[k0] represent the master integrals required
for the transversality calculation, where the mass-shell conditions
p2 = p′2 = −m2 are imposed. It is worth noting that G(0)[p′] =

G(0)[−p] after a shift in the loop momentum, and for the sake of
simplicity, in the following we will refer to G(0)[p′] as G(0) without
loss of generality. The systematic use of relations of type (6.3.6)-(6.3.14)
allows to simplify all the integrals of type J(i), K(i) and M(i) in the
transversality calculation. Thus, only a limited set of integrals requires
the reduction to simpler forms:

I(0)µ[p′] = − 1
2m2

(−2 + D)

(−3 + D)
G(0)[p′]

I(1)µ[p′] =
1

2m2 p′µ G(0)[p′]

I(2)µν[p′] =
1

2m2
m2 δµν − (−2 + D) p′µ p′ν

(−1 + D)
G(0)[p′]

G(1)µ[p′] = − p′µ G(0)

O(1)µ[k0] = −
1
2

kµ
0 O(0)[k0]

O(2)µν[k0] =
−k2

0 δµν + D kµ
0 kν

0
4 (−1 + D)

O(0)[k0]. (C3)

The calculation of form factors will involve a massive reduction of
the integrals listed in equation (C1). Here, the absence of on-shell
conditions on the scalar lines will increase the number of master
integrals, and the capabilities of the program FIRE6 will be exploited.

d berends-giele currents of multiplicity five

In this appendix, we use the method outlined in section 7.4.2 to
calculate color-dressed Berends-Giele polarization currents in the BCJ
gauge and provide the full expression for the current at a multiplicity
five. The computation follows from (7.4.13), where in the five-particle
case P = 12345. In this case, the word decomposition reads

(Q, R) =(1234)(5), (1235)(4), (1245)(3), (1345)(2), (2345)(1),

(123)(45), (124)(35), (125)(34), (134)(25), (145)(23),

(135)(24), (234)(15), (235)(14), (245)(13), (345)(12). (D1)
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Therefore we obtain for the color-dressed Berends-Giele polarization
current Jaµ

12345 the formula

Jaµ
12345 =

ca
[[[[1,2],3],4],5]ε

µ

[[[[1,2],3],4],5]

s12s123s1234s12345
+

ca
[[[[1,3],2],4],5]ε

µ

[[[[1,3],2],4],5]

s13s123s1234s12345

+
ca
[[[[2,3],1],4],5]ε

µ

[[[[2,3],1],4],5]

s23s123s1234s12345
+

ca
[[[[1,2],4],3],5]ε

µ

[[[[1,2],4],3],5]

s12s124s1234s12345

+
ca
[[[[1,4],2],3],5]ε

µ

[[[[1,4],2],3],5]

s14s124s1234s12345
+

ca
[[[[2,4],1],3],5]ε

µ

[[[[2,4],1],3],5]

s24s124s1234s12345

+
ca
[[[[1,3],4],2],5]ε

µ

[[[[1,3],4],2],5]

s13s134s1234s12345
+

ca
[[[[1,4],3],2],5]ε

µ

[[[[1,4],3],2],5]

s14s134s1234s12345
+

+
ca
[[[[3,4],1],2],5]ε

µ

[[[[3,4],1],2],5]

s34s134s1234s12345
+

ca
[[[[2,3],4],1],5]ε

µ

[[[[2,3],4],1],5]

s23s234s1234s12345

+
ca
[[[[2,4],3],1],5]ε

µ

[[[[2,4],3],1],5]

s24s234s1234s12345
+

ca
[[[[3,4],2],1],5]ε

µ

[[[[3,4],2],1],5]

s34s234s1234s12345

+
ca
[[[1,2],[3,4]],5]ε

µ

[[[1,2],[3,4]],5]

s12s34s1234s12345
+

ca
[[[1,3],[2,4]],5]ε

µ

[[[1,3],[2,4]],5]

s13s24s1234s12345

+
ca
[[[1,4],[2,3]],5]ε

µ

[[[1,4],[2,3]],5]

s14s23s1234s12345

+
(
(1234)(5)↔ (1235)(4)

)
+
(
(1234)(5)↔ (1245)(3)

)
+
(
(1234)(5)↔ (1345)(2)

)
+
(
(1234)(5)↔ (2345)(1)

)
+

ca
[[[1,2],3],[4,5]]ε

µ

[[[1,2],3],[4,5]]

s12s123s45s12345
+

ca
[[[2,3],1],[4,5]]ε

µ

[[[2,3],1],[4,5]]

s23s123s45s12345

+
ca
[[[1,3],2],[4,5]]ε

µ

[[[1,3],2],[4,5]]

s13s123s45s12345
+
(
(123)(45)↔ (124)(35)

)
+
(
(123)(45)↔ (125)(34)

)
+
(
(123)(45)↔ (134)(25)

)
+
(
(123)(45)↔ (145)(23)

)
+
(
(123)(45)↔ (135)(24)

)
+
(
(123)(45)↔ (234)(15)

)
+
(
(123)(45)↔ (235)(14)

)
+
(
(123)(45)↔ (245)(13)

)
+
(
(123)(45)↔ (345)(12)

)
, (D2)

where the color factors have structures of type

ca
[[[[1,2],3],4],5] = f̃ b

a1a2
f̃ c
ba3

f̃ d
ca4

f̃ a
da5

ca
[[[1,2],[3,4]],5] = f̃ b

a1a2
f̃ c
a3a4

f̃ d
bc f̃ a

da5

ca
[[[1,2],3],[4,5]] = f̃ b

a1a2
f̃ c
ba3

f̃ d
a4a5

f̃ a
cd . (D3)

Note that, as for the lower-point polarization fields, ε
µ

[[[[1,2],3],4],5] is the
only five-particle polarization field needed in (D2). Indeed, using the
identities

ε
µ

[[[1,2],[3,4]],5] = ε
µ

[[[[1,2],3],4],5] − ε
µ

[[[[1,2],4],3],5],
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ε
µ

[[[1,2],3],[4,5]] = ε
µ

[[[[1,2],3],4],5] − ε
µ

[[[[1,2],3],5],4], (D4)

all the five-particle polarization fields appearing in (D2) are obtained
from the polarization computed in (7.3.22) by a simple relabelling.

Finally, we report here the formula for the double-copy polarization
current at five point Gµν

12345. As pointed out in section 8.2, this is simply
obtained by substituting the color factors ca in (D2) with another copy
of the multiparticle polarization field ε̄µ. The resulting expression for
G

µν
12345 is thus given by

G
µν
12345 =

ε
µ

[[[[1,2],3],4],5] ε̄
ν
[[[[1,2],3],4],5]

s12s123s1234s12345
+

ε
µ

[[[[1,3],2],4],5] ε̄
ν
[[[[1,3],2],4],5]

s13s123s1234s12345

+
ε

µ

[[[[2,3],1],4],5] ε̄
ν
[[[[2,3],1],4],5]

s23s123s1234s12345
+

ε
µ

[[[[1,2],4],3],5] ε̄
ν
[[[[1,2],4],3],5]

s12s124s1234s12345

+
ε

µ

[[[[1,4],2],3],5] ε̄
ν
[[[[1,4],2],3],5]

s14s124s1234s12345
+

ε
µ

[[[[2,4],1],3],5] ε̄
ν
[[[[2,4],1],3],5]

s24s124s1234s12345

+
ε

µ

[[[[1,3],4],2],5] ε̄
ν
[[[[1,3],4],2],5]

s13s134s1234s12345
+

ε
µ

[[[[1,4],3],2],5] ε̄
ν
[[[[1,4],3],2],5]

s14s134s1234s12345

+
ε

µ

[[[[3,4],1],2],5] ε̄
ν
[[[[3,4],1],2],5]

s34s134s1234s12345
+

ε
µ

[[[[2,3],4],1],5] ε̄
ν
[[[[2,3],4],1],5]

s23s234s1234s12345

+
ε

µ

[[[[2,4],3],1],5] ε̄
ν
[[[[2,4],3],1],5]

s24s234s1234s12345
+

ε
µ

[[[[3,4],2],1],5] ε̄
ν
[[[[3,4],2],1],5]

s34s234s1234s12345

+
ε

µ

[[[1,2],[3,4]],5] ε̄
ν
[[[1,2],[3,4]],5]

s12s34s1234s12345
+

ε
µ

[[[1,3],[2,4]],5] ε̄
ν
[[[1,3],[2,4]],5]

s13s24s1234s12345

+
ε

µ

[[[1,4],[2,3]],5] ε̄
ν
[[[1,4],[2,3]],5]

s14s23s1234s12345

+
(
(1234)(5)↔ (1235)(4)

)
+
(
(1234)(5)↔ (1245)(3)

)
+
(
(1234)(5)↔ (1345)(2)

)
+
(
(1234)(5)↔ (2345)(1)

)
+

ε
µ

[[[1,2],3],[4,5]] ε̄
ν
[[[1,2],3],[4,5]]

s12s123s45s12345
+

ε
µ

[[[2,3],1],[4,5]] ε̄
ν
[[[2,3],1],[4,5]]

s23s123s45s12345

+
ε

µ

[[[1,3],2],[4,5]] ε̄
ν
[[[1,3],2],[4,5]]

s13s123s45s12345
+
(
(123)(45)↔ (124)(35)

)
+
(
(123)(45)↔ (125)(34)

)
+
(
(123)(45)↔ (134)(25)

)
+
(
(123)(45)↔ (145)(23)

)
+
(
(123)(45)↔ (135)(24)

)
+
(
(123)(45)↔ (234)(15)

)
+
(
(123)(45)↔ (235)(14)

)
+
(
(123)(45)↔ (245)(13)

)
+
(
(123)(45)↔ (345)(12)

)
. (D5)
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