A 1-factorization F of a complete graph K2n is said to be G-regular, or regular under G, if G is an automorphism group of F acting sharply transitively on the vertex-set. The problem of determining which groups can realize such a situation dates back to a result by Hartman and Rosa (Eur J Comb 6:45–48, 1985) on cyclic groups and it is still open when n is even, although several classes of groups were tested in the recent past. It has been recently proved, see Rinaldi (Australas J Comb 80(2):178–196, 2021) and Mazzuoccolo et al. (Discret Math 342(4):1006–1016, 2019), that a G-regular 1-factorization, together with a complete set of rainbow spanning trees, exists for each group G of order 2n, n odd. The existence for each even n>2 was proved when either G is cyclic and n is not a power of 2, or when G is a dihedral group. Explicit constructions were given in all these cases. In this paper we extend this result and give explicit constructions when n>2 is even and G is either abelian but not cyclic, dicyclic, or a non cyclic 2-group with a cyclic subgroup of index 2.
Quaternionic 1-Factorizations and Complete Sets of Rainbow Spanning Trees / Rinaldi, Gloria. - In: GRAPHS AND COMBINATORICS. - ISSN 0911-0119. - 39:1(2023), pp. 1-25. [10.1007/s00373-023-02610-6]
Quaternionic 1-Factorizations and Complete Sets of Rainbow Spanning Trees
Gloria Rinaldi
2023
Abstract
A 1-factorization F of a complete graph K2n is said to be G-regular, or regular under G, if G is an automorphism group of F acting sharply transitively on the vertex-set. The problem of determining which groups can realize such a situation dates back to a result by Hartman and Rosa (Eur J Comb 6:45–48, 1985) on cyclic groups and it is still open when n is even, although several classes of groups were tested in the recent past. It has been recently proved, see Rinaldi (Australas J Comb 80(2):178–196, 2021) and Mazzuoccolo et al. (Discret Math 342(4):1006–1016, 2019), that a G-regular 1-factorization, together with a complete set of rainbow spanning trees, exists for each group G of order 2n, n odd. The existence for each even n>2 was proved when either G is cyclic and n is not a power of 2, or when G is a dihedral group. Explicit constructions were given in all these cases. In this paper we extend this result and give explicit constructions when n>2 is even and G is either abelian but not cyclic, dicyclic, or a non cyclic 2-group with a cyclic subgroup of index 2.File | Dimensione | Formato | |
---|---|---|---|
2203.01653.pdf
Open access
Descrizione: pre-print
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
250.95 kB
Formato
Adobe PDF
|
250.95 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris