Index tracking aims at replicating a given benchmark with a smaller number of its constituents. Different quantitative models can be set up to determine the optimal index replicating portfolio. In this paper, we propose an alternative based on imposing a constraint on the q-norm, 0 < q < 1, of the replicating portfolios’ asset weights: the q-norm constraint regularises the problem and identifies a sparse model. Both approaches are challenging from an optimisation viewpoint due to either the presence of the cardinality constraint or a non-convex constraint on the q-norm. The problem can become even more complex when non-convex distance measures or other real-world constraints are considered. We employ a hybrid heuristic as a flexible tool to tackle both optimisation problems. The empirical analysis on real-world financial data allows to compare the two index tracking approaches. Moreover, we propose a strategy to determine the optimal number of constituents and the corresponding optimal portfolio asset weights.
Fastrich, B., S., Paterlini e P., Winker. "Cardinality versus q-Norm Constraints for Index Tracking" Working paper, RECENT WORKING PAPER SERIES, Dipartimento di Economia Marco Biagi – Università di Modena e Reggio Emilia, 2011.
Cardinality versus q-Norm Constraints for Index Tracking
Paterlini, S.;
2011
Abstract
Index tracking aims at replicating a given benchmark with a smaller number of its constituents. Different quantitative models can be set up to determine the optimal index replicating portfolio. In this paper, we propose an alternative based on imposing a constraint on the q-norm, 0 < q < 1, of the replicating portfolios’ asset weights: the q-norm constraint regularises the problem and identifies a sparse model. Both approaches are challenging from an optimisation viewpoint due to either the presence of the cardinality constraint or a non-convex constraint on the q-norm. The problem can become even more complex when non-convex distance measures or other real-world constraints are considered. We employ a hybrid heuristic as a flexible tool to tackle both optimisation problems. The empirical analysis on real-world financial data allows to compare the two index tracking approaches. Moreover, we propose a strategy to determine the optimal number of constituents and the corresponding optimal portfolio asset weights.File | Dimensione | Formato | |
---|---|---|---|
RECent-wp56.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.23 MB
Formato
Adobe PDF
|
2.23 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris