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Abstract

Index tracking aims at replicating a given benchmark with a smaller number
of its constituents. Different quantitative models can be set up to determine the
optimal index replicating portfolio. In this paper, we propose an alternative
based on imposing a constraint on the g-norm, 0 < ¢ < 1, of the replicating
portfolios’ asset weights: the ¢-norm constraint regularises the problem and
identifies a sparse model. Both approaches are challenging from an optimi-
sation viewpoint due to either the presence of the cardinality constraint or a
non-convex constraint on the g-norm. The problem can become even more
complex when non-convex distance measures or other real-world constraints are
considered. We employ a hybrid heuristic as a flexible tool to tackle both op-
timisation problems. The empirical analysis on real-world financial data allows
to compare the two index tracking approaches. Moreover, we propose a strategy
to determine the optimal number of constituents and the corresponding optimal
portfolio asset weights.

Keywords: Index tracking, Cardinality constraint, g-norm, Regularization
methods, Heuristic algorithms.

1 Introduction

Index tracking (or benchmark replication) is a passive financial strategy that
aims at replicating the performance and risk-profile of a given index (or bench-
mark). One of the most common approaches to tackle the index tracking prob-
lem consists of minimizing a given tracking error measure while limiting the
maximum number of assets held in the portfolio. Having few active positions re-
duces the administrative and transaction costs and avoids detaining very small
and illiquid positions, especially when the index has a large number of con-
stituents. However, imposing an upper bound on the number of constituents

*Dept. of Economics, University of Giessen, Germany.

TDept. of Economics, CEFIN and RECent, University of Modena and Reggio E., Ttaly.

tDept. of Economics, University of Giessen, Germany, and Center for European Economic
Research (ZEW), Mannheim, Germany.

Electronic copy available at: http://ssrn.com/abstract=1679690



of the tracking portfolio makes the optimisation problem NP-hard (see, e.g.,
|Coleman et all [2006). Different quantitative approaches have been proposed
to tackle such an optimisation problem. Two comprehensive literature reviews
on the main quantitative methods can be found in Beasley et al| (2003)) and
|Canagkoz and Beasley| (2008). Most approaches rely on search heuristics, which
have proven successful in high dimensional contexts (see, e.g., |Gilli and Kellezi
20020; Beasley et all, Derigs and Nickel| 2003; [Maringer and Oyewumi
2007; [Krink et all [2009; Gilli and Winker] [2009).

While the optimisation challenge has attracted large interest among re-
searchers and practitioners, so far not much attention has been devoted to
develop strategies that would provide the tracking portfolio with some other
ideal characteristics. This includes the development of less expensive strategies
by controlling the turnover and the maintenance of a good tracking performance
both in-sample and out-of-sample. Recently, statistical regularisation methods
have found application in mean-variance portfolio settings (DeMiguel et al.l
12008; Brodie et al., 2008) in order to promote the identification of sparse (with
a small number of constituents) portfolios with good out-of-sample properties
and low turnover. The proposed approaches rely on imposing upper bounds on
the 2-norm or on the 1-norm of the vector of the portfolio weights as suggested
by the Ridge regression (Hoerl and Kennard, 1970) and the LASSO
approach, respectively. Both methods can be considered as a special ver-
sion of the (B)ridge regression approach (Frank and Friendman| 1993)), where
an upper bound is imposed on the g-norm (0 < ¢ < oo)ﬂ Empirical results
in a mean-variance framework (DeMiguel et al., 2008; Brodie et al., [2008) sup-
port the use of the LASSO method when short selling is allowed. However, the
LASSO approach is ineffective in promoting sparsity in presence of the budget
and no-short selling (typical in index tracking) constraints, since the 1-norm of
the asset weights will have a constant value of one.

One valid alternative could then be to consider a constraint on the g-norm
with 0 < ¢ < 1. The lower the upper bound on the g-norm is, the more sparse
and less diversified (with larger weights) are the portfolios. In fact, as suggested
by [Fernholz et al.| (1998), the g-norm of the asset weights can also be considered
as a measure of diversity of the portfolio, which, when the no-short selling
constraint is imposed, has maximum value for the equally weighted portfolio
and minimum value for a portfolio totally invested in a single asset. Hence, by
simply imposing an upper bound on the g-norm, we could identify the tracking
portfolio with the desirable maximum number of assets. Furthermore, this new
formulation of the index tracking problem allows the development of strategies
to identify the optimal maximum number of assets to be held in the tracking
portfolio. From an optimisation viewpoint, the problem is still NP-hard due
to the presence of the non-convex constraint on the g-norm and consequently

heuristics could be preferred to classic optimisation techniques (Canagkoz and
2008).

IWe follow the common practice in the literature to refer to a norm despite the fact that
for cases with 0 < ¢ < 1 it does not define a norm but a quasi-norm, because it violates the
triangle inequality.
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In this paper, we introduce the g-norm formulation of the index-tracking
problem, provide a flexible search heuristic that can effectively deal with the
two NP-Hard optimisation problems and present some strategies to determine
the optimal number of constituents and the corresponding optimal portfolio
asset weights.

Section 2 introduces the formulation of the index tracking problem based on
the g-norm constraint as an alternative to the one which relies on the cardinality
constraint. Section 3 describes the main challenges of the two optimisation
problems as well as the heuristic we propose to tackle the two problems. Section
4 presents the experimental set-up to compare the two approaches, while section
5 reports the results of an empirical comparison on real-world data. Section 6
discusses some possible strategies to determine the optimal number of active
weights before we conclude in section 7.

2 Cardinality and ¢-Norm Constraints for Index
Tracking

Index tracking aims at replicating a given benchmark with a smaller number
of benchmark constituents. One of the most common quantitative approaches
is to tackle the problem as an optimisation problem with a cardinality con-
straint. Hence, when no short selling is allowed, the optimisation problem can
be formulated as:

arg min TE(w), (1)
> wi=1, (2)
i€d
0<w <1, (3)
#j S KTYLQQ?? (4)

where the target is to determine the K x 1 asset weight vector w = [wy, ..., wK]'
that minimizes a given tracking error measure 7TFE(w) with number of active
positions #J (I = {i € {1, ..., K }w; > 0}) at most equal to K,z € {1,..., K}.
Two of the most commonly used tracking error measures are the root mean
squared error and the squared weighted difference between benchmark and
portfolio weights @, i.e.

TE (w) = \/(y — Rw) (y — Rw)/T (5)

TEy(w) = (wb — w) B(wb — w), (6)

where y is the T x 1 vector of the index returns, R is the T' x K matrix of
the index constituents returns, ¥ is the corresponding covariance matrix and
wb = [why, ..., wbg]| is the vector of actual index portfolio weights. The track-
ing error measures and @ are convex, and classic optimisation tools (linear



or quadratic programming) can easily deal with them, but commonly fail when
the cardinality constraint is introduced (unless a linearisation of the prob-
lem is introduced, see, e.g., [Canagkoz and Beasley| (2008)). Search heuristics
could then become a valid alternative. Furthermore, their application allows for
the consideration of other real-world non-linear constraints such as the limited
divisibility of asset shares, minimum transaction lots and transaction costs. An
integer constraint ensures the minimum fraction of the investor’s capital endow-
ment V' being invested in asset ¢ with current price P; is P;/V, corresponding
to one piece of asset i. This leads to discrete weights
niPi
V b
and as a result, it is likely that the investor’s capital endowment cannot be
entirely invested into assets; the reminder R will be held in cash

R= V—ZniPi. (8)

n; € Ng, (7)

w; =

Then the budget constraint becomes

R
1€T
We also notice that imposing only the no-short-selling and budget (2| or
E[) constraints determines lower and upper bounds on the weight vector’s g-norm

1/q
[lwll, = {Zi]\il(wi)q} with 0 < ¢ < 1, which from now on we will simply
refer to as g-norm:
1
1< ||wl|l, <Ka ' (10)

Then, the g-norm has maximum value for the most diversified portfolio which
is the equally weighted one, while it has minimum value for the least diversified
portfolio, which is the one totally invested in a single stock. The g-norm can then
be interpreted, as suggested by |Fernholz et al.|(1998)), as a diversity measure: the
smaller the g-norm, the more sparse is the portfolio. Imposing the cardinality
constraint (4 results in implicitly imposing tighter upper bounds on the g-norm,
such that -

1 <lwllq < Kiaz , (11)

1

where clearly KEL;; <K a1t Hence, the tracking error problem could also be
formulated by replacing the cardinality constraint with a constraint that
poses an upper bound on the ¢g-norm, such as

llwllg <, (12)
11
where t = K$q2- The optimisation problem is still NP-Hard given the presence

of the non-convex constraint on the ¢g-norm and the integer constraint @,
and it can be re-written in terms of the Lagrangian:

arg min TE(w) + A||w||q, (13)



P,
w:”V n; € Nt (14)
K
R=V - "nP, (15)
=1
K
R
Zwi +3 =1 (16)
=1
0<w; <1 (17)

where A is inversely proportional to ¢.
Finally, when g — 0, there exists a value of A such that the optimal solution

to the tracking error problem ([L3])-(17) is equal to the optimal solution of the
optimisation problem , ,-with the following cardinality equality
constraint:

#

7= Knaz- (18)
See [Jansen and van Dijk (2002) for a formal proof.

3 Optimization

3.1 The main Challenges

From an optimisation viewpoint both the cardinality constrained problem ,
7 , —@ and the g-norm constrained problem — are challenging
due to the presence of local optima and discontinuities in the search space.
Figure [3.1] shows an example of the effect of a cardinality constraint on the
search space. We consider a portfolio that consists of at most three assets out of
a choice of four (i.e. the cardinality constraint is #J < 3). We draw all tracking
errors for each of the four possible asset combinations in a three dimensional
graph. In fact, the no-short-selling and the budget constraints assure that the
weight combinations of three assets can be illustrated by triangular regions that
map only two portfolio weights while the third (not shown) is determined by
the budget constraint. These feasible regions build a common base area when
arranged in the order shown in Figure Point A corresponds to a portfolio
that consists of assets 1, 3, and 4 with portfolio weights w; =0.2, w3=0.3, and
wg =1 —w; —ws =0.5. Reducing w; to a value of zero, keeping ws constant,
and consequently increasing portfolio weight w4 to a value of 0.8, corresponds
to a movement that ends in point B. There, the inactive asset 1 (wq=0) can be
replaced by the only asset left that is not already constituent of the portfolio,
i.e., asset 2. Hence, the portfolio’s cardinality (the number of active positions)
does not exceed a value of three. Increasing ws by 0.4 and decreasing w4 by
the same amount gives point C (point D results analogously). Obviously, the
exchange of an asset, which is represented by the transition of one triangular
region to another, is discontinuous, since it requires a movement over an edge.
Furthermore, each region has its own (local) minimum. For this example, the



identification of the portfolio that globally minimizes the tracking error subject
to the cardinality constraint requires a four-fold application of a traditional
optimisation technique.
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Figure 1: Search space when integer constraints are neglected.

Figure@ shows the tracking error of all portfolios that can be constructed with only three
constituents of the Dow Jones Industrial Average 65 when integer constraints are not con-
sidered. All not depicted asset weights are determined by the budget constraint. Initial
endowment: $ 1 million.

Consequently, these techniques will quickly become unfeasible in real-world
problems, which are usually characterised by high dimensionalityEl Heuristics
are then an attractive and viable solution for tackling the index tracking prob-
lem, as numerous studies have already shown (see, e.g.,|Gilli and Kellezi, 2002b;
Beasley et al., 2003; Maringer and Oyewumi, 2007; Krink et al., 2009).

Even when the g-norm constraint is introduced to promote sparsity (instead
of a cardinality constraint), traditional optimization techniques are still likely
to fail due to the non-convexity of the resulting problem. Figure [2] shows the
effect on the objective function of introducing a ¢-norm penalty. The top-
left graph shows the value of the g-norm, with ¢ = 0.5, of all feasible weight
combinations: as expected, the maximum value is determined for the equally
weighted portfolio (i.e.: wy =wy=w3=1/3). The remaining three graphs show
values of the objective function for different values of A, namely 0, 0.0025,
and 0.005 respectively. When A=0 the objective function is convex (top right

2If we consider a portfolio that is made of at most 20 assets out of 100, we have approxi-
mately 7.07 - 1020 applications of a traditional optimisation technique.



graph). The (global) minimum corresponds to projection A’ in the solution
space (w; =0.18, we =0.5, w3 =0.32). When A > 0 the objective function is
non-convex. The bottom-left graph shows that increasing
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Figure 2: Mechanism of the g-norm penalty.

Figure [2] shows the g-norm (top-left) and objective function (I3, where ¢ = 0.5 and A = 0
(top-right), A = 0.0025 (bottom-left), and A = 0.005 (bottom-right). The non-convexity of the
g-norm constraint problem formulation as well as its promotion of sparsity when increasing A
is shown.

A to a value of 0.0025 changes the objective function shape and its minimum
is now B, which corresponds to projection B’ in the solution space (w1, wa, ws).



This is a sparse portfolio, since it consists of only two active positions (w; =0).
A is now only a local minimum. If A is then set equal to 0.005, the tracking
error is penalized more by the g-norm than in the previous cases and therefore
sparsity increases such that only a single asset weight is active. This is shown
in the bottom-right graph where minimum C corresponds to a portfolio that is
fully invested in a single asset (wq =0, wa=1, ws=0).

3.2 An Hybrid Heuristic Algorithm for Index Tracking

In this paper, we use the hybrid heuristic algorithm (HHA) proposed by [Fastrich
and Winker| (2010), which is based on the hybrid local search algorithm intro-
duced by Maringer and Kellerer| (2003). The main differences between these two
similar algorithms are related to, firstly, the embedded local search strategy, for
which the HHA does not use Simulated Annealing (Kirkpatrick et al. [1983)
but its deterministic analogue Threshold Accepting (TA) (Dueck and Scheuer)
1990). Secondly, the HHA applies the TA-acceptance rule also within the evo-
lutionary procedures in order to lessen the selective pressure on the population
of solutions.

Algorithm [1] reports the pseudo code. In generation g = 0, the algorithm
generates and evaluates a population of Pop random feasible solutions 1197 p=
1,..., Pop. The solutions {IS} are referred to as search agents or individu-
als, and each individual encodes a feasible asset allocation. The population
is then evolved by means of evolutionary operators. For each step size Uy, with
t=1,...,thresh, the population undergoes evolutionary operators for a number
of iter generations. The step size Uy, which linearly decreases from U,,,q4 t0 Upin
by AU when t increases, can be interpreted as a fraction of the total capital
endowment V' that is subject to portfolio adjustments between two evolution-
ary steps. More precisely, these modifications, which are conducted within the

Algorithm 1 Hybrid Heuristic Algorithm.

1: Initialize Pop, thresh, iter, Umin, Umae and AU = (Umaz — Umin)/thresh
2: Generate a valid initial (¢ = 0) population of random solutions {Ig}, p=1,..., Pop

3: Evaluate the objective function for Ig Vp
4: for t =1 to thresh do

5 Determine the step size Uy = Umaz — AU - (t — 1)
6 for [ =1 to iter do
7 g=(t—1) iter+1
8 Modification Phase
9: FEvaluation Phase
10: Replacement Phase
11: end for
12: end for

13: terminate algorithm and report the best solution found

Modification Phase, independently adjust the individuals in a componentwise
manner (i.e.: one asset’s position is reduced while that of another is increased,
see for example (Dueck and Winker} 1992} |Gilli and Kellezi, |2002qd). After the
Modification Phase, the population is then evaluated (FEwvaluation Phase) by



ranking the individuals according to their objective function values. Finally, in
the Replacement Phase the worst individuals are replaced either by so-called
Clones, i.e., exact copies of the current population’s best individuals, or by
so-called Awveraged Idols, i.e., individuals that combine assets which have been
proven to be successful in other portfolios. More precisely, an Averaged Idol
draws assets not from the whole asset universe, but of an (regularly updated)
subset, which contains only those assets that were held by individuals with good
objective function values. This arrangement of the phases helps to, firstly, find
a successful combination of assets, i.e., a core structure, in earlier generations,
before it, secondly, contributes to assigning proper weights to this core struc-
ture’s assets. The reader is referred to [Fastrich and Winker| (2010)) for a detailed
description and a parameter tuning analysis of the HHA.

4 Experimental Set-Up

We consider the daily log-returns of three stock market indices and their con-
stituents, namely the German DAX 100 (Period: 17.03.05 to 06.03.08), the Dow
Jones Industrial Average 65 (DJ 65, Period: 12.04.2002 to 19.12.2003) and the
Standard & Poor’s 500 (S&P 500, Period: 20.09.2006 to 01.10.2008). Table
reports the summary statistics of the daily log-returns of the indices. The three
return times series exhibit the typical patterns of financial times series: mean
values around zeros, light asymmetry but fat tails.

Table 1: Summary Statistics of the indices daily log-returns

number of sample standard

constituents size mean deviation skewness min max
DAX 100 98 750 0.0471 1.0372 —0.7120 —7.4636 5.6375
DJ 65 65 440 —0.0029 1.3402 0.1917 —4.6097 5.3455
S&P 500 491 530 —0.0249 1.2439 —0.8724 —9.2002 5.2785

In all the experiments, we assume an initial endowment of one million Euros
for the DAX 100 or Dollars for the DJ 65 and the S&P 500 and determine
index tracking investment strategies using a moving time window procedure.
In particular, we assume that the optimal tracking portfolio is determined by
using a window of 250 observations and held unchanged for the subsequent 21
out-of-sample trading days. Then, the (in-sample) window is moved forward by
21 days and the new optimal tracking portfolio is determined using a window of
250 observations and again held unchanged for the next 21 out-of-sample days
and so forth. Consequently, tracking portfolios are revised once a month.

5 A comparison of the two approaches on real-
world data

The first step of our empirical analysis aims to compare the cardinality and
the g-norm constraint approach. Using a rolling window scheme and initial



endowment, as described in Section [d] we compare the performances of the two
approaches over the whole period. In particular, Table[2|and [3|report the results
when setting ¢=0.5 and X equal to 1.5-1074,0.5-107%, and 0.22-10~* in order
to determine tracking portfolios with different sizes (with respectively 8-13, 17-
25 and 28-42 active weights). The maximum number of assets K4, in the
cardinality constraint is then set equal to the number of active weights (positive
weights) found with the g-norm approach in the different windows. Then, given

1—g

that ¢=0.5, the upper bound for the g-norm K%, is equal to K,nqs. Clearly, this
could imply a less tight constraint on the g-norm for the cardinality constraint
approach. To explain this, let’s consider a simple example with only three assets
and set ¢g=0.5. The g-norm surface for all feasible portfolios is represented in
Figure |2| (top-left): the minimum values correspond to the cases when only one
weight is active (||w||,=1), while the maximum values correspond to the equally
weighted portfolio (||w]||, =3). As|Fernholz et al| (1998)) report, the g-norm is
also a measure of investment diversification. Then, since we know that there
is an inverse relationship between A and ¢, which cannot be easily derived, it
could happen that we fix A such that only two weights are active but which does
not exactly corresponds to solve the optimisation problem with ¢ = 2 but for a
value of ¢ such that 1 < t < 2. Then, not all feasible portfolios with two active
assets are included in the search space. As a consequence, the feasible search
space for the g-norm formulation is smaller than for the cardinality constraint,
when setting K., equal to 2. This appears evident when looking at the ¢-
norm values in Table [3} the minimum, mean and maximum g¢-norm values of
the optimal portfolios are always larger for the cardinality approach, revealing
a small comparative advantage in terms of diversification for the cardinality
constraint approach.

Table [2] reports the in-sample and out-of-sample average tracking error, ex-
cess return, correlation and turnover, while Table [3| reports the skewness, kur-
tosis, value-at-risk of the out-of-sample return time series and the minimum,
mean and maximum value of the g-norm for ¢g=0.5. As Table [2| shows, the dif-
ferences in the in-sample and out-of sample average tracking error volatilities
among the two approaches are - with one exception - not statistically significant,
while the average excess returns are statistically different in seven cases. Among
them, five suggest that the g-norm approach provide tracking portfolios with
better performances. In contrast, the two approaches lead to identify equivalent
portfolios not only in terms of tracking error volatilities but also with respect
to the average turnover and the correlation with the benchmark, although the
correlation appears to be slightly higher for the ¢g-norm approach for the DJ 65
and the S&P 500 data sets. Furthermore, looking at Table [3] we also notice
that although the cardinality constraints portfolios are more diversified, as the
g-norms show, the values of skewness, kurtosis and Value at Risk at 99% level
are very similar. Finally, when comparing the portfolio compositions, as Fig-
ure [3] shows, we find further support of the fact that the two approaches lead
to identify equivalent portfolios also in terms of asset composition. Differences
between asset weights are, as Figure [3| shows, often negligible.
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Table 2: Tracking Error, Excess returns, Correlation and Turnover

in-sample out-of-sample in-sample out-of-sample in-sample out-of-sample
cardin g-norm cardin g-norm cardin g-norm cardin g-norm cardin g-norm cardin g-norm

Panel A: DAX 100
9 to 12 stocks (©=10,25) 18 to 24 stocks (©¥=21,42) 31 to 37 stocks (¥=34,29)

A 1.5-107% 0.5-10"% 0.22-1074

annualized tracking error volatility in percent
mean 2,43 2,46 3,24 3,27 1,15 1,17 1,68 1,68 0,66 0,67 1,02 1,07
std 0,20 0,20 0,75 0,77 0,12 0,12 0,45 0,46 0,08 0,09 0,23 0,23
tairy 0,49 0,16 0,49 0,04 0,63 0,74

annualized excess return over the benchmark in percent
mean —1,64 -1,28 —-5,75 -5,75 0,39 0,15 —-1,86 —1,54 0,19 0,12 —2,09 —2,44
std 0,52 0,49 2,55 291 0,33 0,36 1,48 1,68 0,18 0,16 0,79 0,83

taifr 2,51%* 0,01 2,43** 0,68 1,33 1,46
corr 0,980 0,984 0,989 0,986 0,992 0,991 0,997 0,996 0,998 0,998 0,999 0,999
O-to. 0,38 0,35 0,26 0,27 0,18 0,20

Panel B: DJ 65
8 to 13 stocks (¥=10,70) 19 to 25 stocks (¥=22,30) 30 to 40 stocks (?=35,40)

A 1.5-1074 0.5-10"% 0.22-10"%

annualized tracking error volatility in percent
mean 3,76 3,80 3,98 3,71 2,34 2,37 291 3,09 1,74 1,73 2,29 2,43
std 0,08 0,09 0,21 0,11 0,06 0,05 0,19 0,26 0,03 0,03 0,21 0,26
taiff 0,35 1,13 0,33 0,56 0,13 0,42

annualized excess return over the benchmark in percent
mean 2,34 2,33 —2,09 -2,17 1,74 2,07 3,55 4,99 1,47 1,69 —0,62 2,47
std 0,54 0,47 1,66 1,66 0,13 0,11 0,89 0,74 0,08 0,06 0,56 0,56

taify 0,02 0,04 1,93% 1,25 2,27%* 3,00% %
corr 0,958 0,968 0,645 0,648 0,997 0,998 0,870 0,934 0,999 0,999 0,963 0,964
O-t.o. 082 0,72 0,64 0,63 0,34 0,36

Panel C: S&P 500
9 to 13 stocks (@=10,14) 17 to 25 stocks (¥=20,71) 28 to 42 stocks (?=33,71)

A 1.5-1074 0.5-10"% 0.22-10"%

annualized tracking error volatility in percent
mean 3,14 3,14 5,90 5,66 1,88 1,87 4,31 4,67 1,60 1,30 3,86 3,82
std 0,09 0,08 0,55 0,40 0,06 0,05 0,29 0,39 0,06 0,04 0,23 0,31
taiff 0,03 0,35 0,11 0,75 5,00%** 0,12

annualized excess return over the benchmark in percent
mean 1,77 1,73 2,86 0,99 1,13 0,94 —-3,80 -3,76 0,96 1,37 —0,63 —0,86
std 0,19 0,19 1,86 1,63 0,10 0,13 1,50 1,34 0,02 0,02 0,36 0,23

taiff 0,17 0,76 1,14 0,02 13,04%%* 3.53%%%
corr 0,973 0,975 0,886 0,892 0,993 0,987 0,801 0,913 0,994 0,994 0,961 0,969
O-t.o. 1,36 1,28 1,38 1,45 1,38 1,39

Table [2| summarizes the results of both the cardinality constraint (abbreviated as cardin) and the
g-norm constraint approach (where ¢ =0,5) for all data sets. Each benchmark is replicated with
three differently sized tracking portfolios headed with their number of constituents (average in
parenthesis). A statistically significant difference with confidence level 10% (5%, 1%) between the
two approaches is marked with one (two, three) asterisk(s) at the variable tg;rf, which shows the
t-statistic of the difference between the two approaches. The correlation coefficient between the
returns of the tracking portfolio and the index is given by corr and the averaged turnover is given
by O-t.o.
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Table 3: Extreme statistics and g-norms
cardinality

g-norm cardinality g-norm

cardinality

g-norm

Panel A: DAX 100

9 to 12 stocks (©=10,25) 18 to 24 stocks (?¥=21,42) 31 to 37 stocks (?¥=34,29)
A 1,5-1074 0,5-1074 0,22-1074
distribution of daily (out-of-sample) portfolio returns
skew —0,6432 —0,6445 —0,7517 —0,7759 —0,7690 —0,7877
kurt 8,4661 8,4456 8,3175 8,4352 8,4150 8,3638
VaRg9 =~ —0,0297 —0,0310 —0,0288 —0,0291 —0,0307 —0,0308
portfolio weight’s q-norm

min 8,68 8,45 16,63 16,47 27,30 26,78
mean 9,91 9,71 19,80 19,36 29,58 28,81

max 11,35 11,23 22,07 21,81 31,36 30,89

Panel B: DJ 65
8 to 13 stocks (¥=10,70) 19 to 25 stocks (@=22,30) 30 to 40 stocks (D=35,40)
A

1.5-107% 0.5-107* 0.22-10"*
distribution of daily (out-of-sample) portfolio returns
skew 0,1446 0,1432 0,3124 0,2875 0,2141 0,2397
kurt 3,1407 3,0513 3,1106 3,0325 3,0978 3,1346
VaRg9 =~ —0,0146 —0,0146 —0,0141 —0,0142 —0,0152 —0,0149
portfolio weight’s qg-norm

min 7,70 7,62 17,73 17,60 28,28 27,17
mean 10,32 9,99 21,20 20,55 33,14 32,14
max 12,34 12,00 23,78 23,56 37,59 36,33

Panel C: S&P 500
9 to 13 stocks (@¥=10,25) 17 to 25 stocks (?¥=21,42) 28 to 42 stocks (?¥=33,71)
A

1,5-10"4 0,5-10"4 0,22-10"%
distribution of daily (out-of-sample) portfolio returns
skew 0,0445 —0,0476 0,0024 0,0009 —0,0844 —0,0309
kurt 4,2280 4,1603 3,9763 4,5136 3,2023 4,3820
VaRg9 =~ —0,0349 —0,0349 —0,0343 —0,0353 —0,0283 —0,0283
portfolio weight’s g-norm

min 8,60 8,35 15,86 15,52 25,67 25,04
mean 9,74 9,40 19,73 19,23 31,17 30,90
max 12,09 11,57 24,12 23,13 39,43 37,18

Tableshows the skewness, the kurtosis, and the 99-percent value at risk (VaRgg) of the out sample
return-distribution of the portfolios (based on a daily frequency).
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Figure 3: Differences in Portfolio compositions

Differences in weights of (small) portfolios; DAX 100.The scaling of the vertical axis is deter-
mined by the maximum portfolio weights (g-norm: 0.21 and cardinality: 0.19).

6 Selecting the Optimal Number of Active Weights

One of the most challenging questions a passive asset manager has to face is
how to determine the optimal number of active weights to track a given index
or benchmark. In fact, although having a large number of active weights can
lead to a better tracking performance, the relationship between the number
of active positions and the in-sample tracking error is not linearly decreasing
but tends to have a hyperbolic shape: a sharpe decrease at the beginning and
then a slight improvement for each newly added asset after enough assets are
included in the tracking portfolio. Empirical results also show that out-of-
sample tracking errors could be larger for a larger number of assets
. A possibility of choosing the best combination of ¢ and A and
therefore to determine the optimal size of the tracking portfolio in the g-norm
approach, is to use cross-validation. Section [6.1]describes in an ideal world with
no transaction costs one approach to select the optimal tracking portfolio size
and composition. Clearly, the assumption of no transaction costs is unrealistic.
In fact, the choice of how many active positions to have is strongly influenced by
the cost of implementing the trading strategy, which ideally should be as cheap
as possible. Then, section describes an approach to determine the number
of active weights when taking into account transaction costs.

6.1 Ideal world: No Transaction Costs

As a first step for the cross-validation, we define a grid of 400 equally spaced
nodes (g-A-combinations), with ¢ € [0.3,0.7] and A € [1-107%,2-107%]. Then,
we estimate the optimal tracking portfolio on a window of 250 observations (in-
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sample) and evaluate its performance on a window of 21 observations (out-of
sample). In addition to the real sample we block bootstrap (block length 21) 49
further data samples (Efron and Tibshiranil [1993)): 250 observations corresponds
to the in-sample and 21 to the out-of-sample interval. For each sample and each
g-A-combination we estimate the optimal tracking portfolio. Figure 4 shows the

#4i|w, >0}
100

in-sample
frontier

out-of-sample
frontier

Figure 4: Number of active positions.

Figure shows the average number of active positions in correspondence to the g-A-
combinations. Combinations that on average do not differ statistically significantly from
the best solution found, in terms of the (in-sample vs. out-of-sample) tracking error lie on or
are in the subset to the left of the depicted frontiers.

average number of active weights for each grid node. As expected, the portfolio
size decreases for small values of ¢ and large values of A\. Small values of ¢
promote sparsity and large values of A increase the size of the g-norm penalty
in the objective function. The largest portfolios are identified for the smallest
value of A, independent of the value of ¢q. In fact, in such cases, the penalty is
basically equal to zero and there is no promotion of sparsity, since it is alike a
situation with no g-norm constraint. Given A, the optimal portfolios shrink in
size when ¢ decreases. Figure [5| shows the mean values of the in-sample (top-
left) and out-of-sample (bottom-left) tracking errors and the mean values of the
in-sample (top-right) and out-of-sample (bottom-right) excess returns. We also
draw two frontiers, one for the in-sample and the other for the out-of-sample
results, to identify the portfolios that are statistically equivalent in mean values
to the optimal in-sample and out-of-sample portfolios (marked with stem and
filled dot), respectively. The term “statistically equivalent” is used in cases in
which the t-value of the difference between the means of the 50 samples is greater
than two. The two frontiers are also plotted in in Figure [l As Figure [5] shows,
the in-sample and out-of-sample tracking errors increase when ¢ decreases and
A increases, that is when the portfolio sizes shrink. The out-of-sample frontier is
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Figure 5: Bootstrapped surfaces without costs.

Figure [5| shows the mean values of the in-sample (top-left) and out-of-sample (bottom-left)
tracking errors as well as the mean values of the in-sample (top-right) and out-of-sample
(bottom-right) excess returns. In-sample and out-of sample best solutions are marked with
stem and filled dot. Combinations that on average do not differ statistically significantly from
the best solution lie on or are in the subset to the left of the frontiers. In the excess return
graphics those combinations are marked with a point, for which the null hypothesis of an
expected value of zero could not be rejected.
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quite far from the in-sample one. In fact, the number of in-sample statistically
equivalent combinations is equal to 50 out of 400 and the average number of
active positions in this subset varies between a minimum of 64.86 to a maximum
of 90.843 with mean and median values equal to 80.78 and 81.88, respectively.
The situation changes drastically in terms of portfolios sizes when we look at
the out-of-sample statistically equivalent portfolios: the larger variability in
the results lead to have 151 out of 400 equivalent combinations and the average
portfolio size varies from a minimum value of 24.51 to a maximum value of 90.84
with mean and median values equal to 52.77 and 56.57, respectively. The best in-
sample g-A-combination, which leads to identify portfolios with on average 84.49
active weights, ranks 97th if we sort the optimal portfolios with respect to the
out-of-sample tracking error, while the best out-of sample combination, which
lead to identify portfolios with on average 35.63 active weights, ranks 124th when
sorting with respect to the in-sample tracking error. A nice analysis regarding
the in- and out-of-sample ranks of optimised portfolios is provided by |Gilli
and Schumann| (forthcoming)). Hence, the best in-sample portfolio can still be
considered as statistically equivalent to the best out-of-sample one, but not vice-
versa. This could result in discarding smaller portfolios, although out-of-sample
they show good tracking performances and the average size of out-of-sample
statistically equivalent portfolios is much smaller than the in-sample equivalent
ones. Furthermore, the empirical results show that also excess returns exhibit a
large variability when considering smaller portfolios, which could result in small
but also in large excess returns.

6.2 Real world: Transaction Costs

As the previous section has shown, the out-of-sample optimal portfolios tend to
be smaller in size than the in-sample optimally chosen ones, which makes them
a more attractive investment opportunity. Clearly, this is even more important
when considering a real-world set-up, where managers have to take into account
transaction, administrative and monitoring costs. In this section, we show that
introducing a simple but yet realistic way of modeling costs, could allow to
even better tackle the problem of selecting the optimal size and composition
of a tracking portfolio. The transaction, administrative and monitoring costs
are modeled by a fixed payment cy; that is due whenever stock ¢ is purchased
or soldEI In addition, financial institutions charge investors for the execution
of orders. We assume these fees to grow proportionally with the transaction
volume by the factor cp, ;. Thus, we introduce the following cost function:

¢= > crj + cpjlAn| ;. (19)
j={ii=1,...,K|0<|An;|}

Costs occur with a monthly frequency whenever a stock is subject to portfolio
rebalancing. We assume that the index tracking strategy must not exceed a cost

30f course, further cost categories, such as regular payments for the custody account, can
be seen as included in this fixed cost term.
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limit of Cyqz. If the rebalancing costs exceed this limit, we add a penalty to
the optimised tracking error. The penalty is not taken into account during the
optimisation but added ex-post to not impose a further constraint which could
at this stage narrow too much the feasible search space. The introduction of a
cost constraint during the optimisation is left for further research.

Since transaction costs arise by changes from holding one portfolio to holding
another (updated) portfolio, we optimise an initial portfolio with the first 250
observations of our data set. The performance of this portfolio is not part of
the analysis; it only serves as a starting point to compute the transaction costs
that are caused by the transition to all sample’s portfoliosEl As in the previous
section, we block bootstrap such that we obtain 50 samples with an in-sample
and out-of-sample window of 250 and 21 observations, respectively.

Figure[6]shows the average number of active positions for each g-A-combination
for the DAX 100 data set and cf; =20, ¢, ; =0.0025, and Cprqz = 2,500. Darker
shaded bars point out the optimal portfolios which are statistically equivalent

il w, > 03 in- and out-of-sample
100 insignificants
. only in-sample
50 insignificants
only out-of-sample
0 insignificants
0
0.5
1
0.3
1070 15 05 04
2 07 0.6 g

Figure 6: Number of active positions.

Figure |§| shows the average number of active positions dependent on the A-g-combination.
Combinations that on average do not differ statistically significantly from the best solution
found, in terms of the (in-sample vs. out-of-sample) tracking error, are marked red and green.
The combinations that are marked blue do not differ significantly in both cases, in-sample as
well as out-of-sample.

in-sample, out-of-sample, or both. It appears evident that the optimal portfolios
tend to have smaller sizes when considering transaction costs and only seven of
the optimal out-of-sample portfolios which are statistically equivalent are not
also considered statistically equivalent to the optimal one in-sample. The num-
ber of in-sample and out-of-sample statistically equivalent combinations is equal

4 One reason for this setup is to avoid the complications caused by the high transaction
costs when constructing a portfolio at time 0.
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to 61 and 40 out of 400, respectively. Compared to the analysis without cost, the
number of out-of-sample equivalent combinations is much smaller (40 instead of
124). Furthermore, the average number of in-sample and out-of-sample active
positions are now similar: in-sample the average portfolio size varies between a
minimum of 25.56 to a maximum of 54.46 with mean and medians values equal
to 36.74 and 36.83, out-of-sample between a minimum of 14.44 to a maximum
of 43.84 with mean and medians values equal to 31.48 and 31.841. Furthermore,
as Figure [7] shows, the tracking error surfaces are now very different than in the

TE, (w)+Penalty _— (Rw =),
e o 0.005,

0
-0.005
-0.018
= 0.3
5 .7 06 O q‘ 1072

TE,, (w)+ Penalty . (Rw—y),,.
o 0.01, -

0.015, .

Figure 7: Bootstrapped surfaces with costs.

Figure [7] shows the mean values of the in-sample (top-left) and out-of-sample (bottom-left)
tracking error, which is penalized with +0.004, if the rebalancing costs exceed Chqqe = 2.500.
In the two tracking error graphics the best solution found is marked with stem and filled dot.
Combinations that on average are not statistically significantly different from the best solution
lie on the frontier or are enveloped by it. The figure also shows the mean values of the in-
sample (top-right) and out-of-sample (bottom-right) excess return over the benchmark, where
those combinations are marked with a point, for which the null hypothesis of an expected
value of zero could not be rejected.

no-costs set-up. Introducing costs leads to strong preferences for more parsi-

monious portfolios: the portfolios identified in correspondence to small values
of X and large values of ¢ are not any longer the optimal investment opportuni-
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ties due to the excessive costs and again the portfolios with a too low number
of active positions, identified for small values of ¢, do not allow to optimally
track the index performance. The area of the optimal portfolios is identified
in the valley. There is almost an one-to-one correspondence between in-sample
and out-of-sample statistically equivalent portfolios. The presence of a large
out-of-sample variability of the tracking error leads to identify a smaller set of
statistically equivalent portfolios with smaller sizes than in the previous case
without costs. Introducing a realistic but yet simple way of modelling costs
can then allow to identify smaller optimal portfolios that exhibit nice properties
both in-sample and out-of-sample.

7 Discussion and Further Research

Index tracking aims to replicate the performance of an index by using a small
number of constituents. Ideally, the tracking investment strategy should be
cheap to implement and should have not only good in-sample properties but
also out-of-sample ones. The problem can be formulated as an optimisation
problem: minimize a given distance measure between the tracking portfolio
and the index such that at most K constituents have active weights. This
approach is known in the literature as the cardinality constraint approach. The
optimisation problem is NP-hard and it becomes extremely challenging when
the problem size is large. In this paper, we introduce a formulation of the
problem by imposing a constraint on the g-norm (0 < ¢ < 1) of the portfolio
weights. Such regularisation techniques are well-established in the statistical
community and have recently gained much attention as a way for simultaneous
model selection and estimation, especially in linear regression models. In fact,
the introduction of the g-norm penalty allows to promote sparsity and therefore
to select and estimate only few non-zero coefficients for a subset of explanatory
variables. Furthermore, imposing a constraint on the g-norm of portfolio weights
is a natural way for controlling diversification in the tracking portfolio: it can
be easily shown that, given the budget constraint and the positivity constraint
of the asset weights, the larger the ¢g-norm the more diversified is the portfolio.

The g-norm approach could then provide a better way of tackling the index
tracking problem for different reasons. First, we have shown, using three dif-
ferent data sets, that the two approaches lead to equivalent results in terms of
tracking errors and portfolio size when considering almost equivalent set-ups,
but the ¢g-norm approach seems to provide on average portfolios with larger
excess returns and out-of-sample correlations. We find then evidence that im-
posing the g-norm constraint allows to regularise the index tracking problem,
determining in one single step the number of active weights and their optimal
values, and providing models with good out-of-sample performances. Other re-
cent studies (e.g.,[DeMiguel et all|2008; Brodie et al., 2008) have found similar
findings in a mean-variance context. Further research on different data sets and
data frequency is currently high on our agenda.

Second, we have proposed a simple yet effective method to use the g-norm
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approach to solve the problem of selecting the optimal portfolio size by using
cross-validation not only in an ideal world, without transaction costs, but also in
a real-world context, where costs are considered. The empirical results show that
the g-norm approach combined with an easy but yet realistic way of modeling
transaction costs could allow to identify a portfolio with relatively small size
and attractive in-sample and out-of-sample tracking performances.

Third, the g-norm approach could provide an easier way of simplifying the
optimisation problem or approximating the non-convex constraint on the ¢-
norm (e.g.,|Coleman et al.,2006) rather than the cardinality constraint and then
develop more efficient optimisation methods. In this work, we have proposed
to use a search heuristics for both optimisation problems but comparison with
other optimisation algorithms is currently under investigation.
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