The luxury car market has demanding product development standards aimed at providing state-of-the-art features in the automotive domain. Handling performance is amongst the most important properties that must be assessed when developing a new car model. In this work, we analyse the problem of predicting subjective evaluations of automobiles handling performances from objective records of driving sessions. A record is a multi-dimensional time series describing the temporal evolution of the mechanical state of an automobile. A categorical variable quantifies the evaluations of handling properties. We describe an original deep learning system, featuring a denoising autoencoder and hierarchical attention mechanisms, that we designed to solve this task. Attention mechanisms intrinsically compute probability distributions over their inputs’ components. Combining this feature with the saliency maps technique, our system can compute heatmaps that provide a visual aid to identify the physical events conditioning its predictions.

Deep learning-assisted analysis of automobiles handling performances / Sapienza, Davide; Paganelli, Davide; Prato, Marco; Bertogna, Marko; Spallanzani, Matteo. - In: COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS. - ISSN 2038-0909. - 13:1(2022), pp. 78-95. [10.2478/caim-2022-0007]

Deep learning-assisted analysis of automobiles handling performances

Davide Sapienza;Marco Prato;Marko Bertogna;Matteo Spallanzani
2022

Abstract

The luxury car market has demanding product development standards aimed at providing state-of-the-art features in the automotive domain. Handling performance is amongst the most important properties that must be assessed when developing a new car model. In this work, we analyse the problem of predicting subjective evaluations of automobiles handling performances from objective records of driving sessions. A record is a multi-dimensional time series describing the temporal evolution of the mechanical state of an automobile. A categorical variable quantifies the evaluations of handling properties. We describe an original deep learning system, featuring a denoising autoencoder and hierarchical attention mechanisms, that we designed to solve this task. Attention mechanisms intrinsically compute probability distributions over their inputs’ components. Combining this feature with the saliency maps technique, our system can compute heatmaps that provide a visual aid to identify the physical events conditioning its predictions.
2022
13
1
78
95
Deep learning-assisted analysis of automobiles handling performances / Sapienza, Davide; Paganelli, Davide; Prato, Marco; Bertogna, Marko; Spallanzani, Matteo. - In: COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS. - ISSN 2038-0909. - 13:1(2022), pp. 78-95. [10.2478/caim-2022-0007]
Sapienza, Davide; Paganelli, Davide; Prato, Marco; Bertogna, Marko; Spallanzani, Matteo
File in questo prodotto:
File Dimensione Formato  
0001_D_22_0007_Prato.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 803.05 kB
Formato Adobe PDF
803.05 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1291764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact