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Abstract

The luxury car market has demanding product development standards aimed at providing state-of-the-art features
in the automotive domain. Handling performance is amongst the most important properties that must be assessed when
developing a new car model. In this work, we analyse the problem of predicting subjective evaluations of automobiles handling
performances from objective records of driving sessions. A record is a multi-dimensional time series describing the temporal
evolution of the mechanical state of an automobile. A categorical variable quantifies the evaluations of handling properties.
We describe an original deep learning system, featuring a denoising autoencoder and hierarchical attention mechanisms,
that we designed to solve this task. Attention mechanisms intrinsically compute probability distributions over their inputs’
components. Combining this feature with the saliency maps technique, our system can compute heatmaps that provide a
visual aid to identify the physical events conditioning its predictions.
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1. Introduction and problem statement

In human-vehicle systems, the human driver represents a complex controller in a feedback loop. Han-
dling is defined as the way a vehicle responds and reacts to its driver’s inputs. This definition encompasses
an extremely large range of situations since it depends on several variables, including the vehicle’s mechan-
ical properties, the context of the driving experience (road, weather) and the driver. For these reasons,
handling properties of different vehicles are usually assessed and compared by interviewing professional
drivers about their experiences when performing specific manoeuvres with the different automobiles on
a given circuit.

The typical development process for such complex products is framed as a cycle composed of three
phases, which are iterated until a satisfactory solution is attained. Before the first iteration, the engi-
neers and the drivers define a list of handling properties that should be evaluated (e.g., stability during
overtaking, understeering, oversteering) and of related test manoeuvres (e.g., overtakings, tight curves).
These choices are kept fixed through all the iterations. The drivers assess handling properties by grading
the response of the vehicle during the agreed-upon manoeuvres. Then, the development cycle proceeds
as follows:

1. [design] the engineers instantiate a tuple of synthesis parameters (e.g., the wheelbase, the ground
clearance) that describe the vehicle to be tested; from these parameters, a physical prototype of
the vehicle can be built, or a virtual model of the car can be created;
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2. [test] the drivers perform the agreed manoeuvres using the physical (or virtual) automobile and
grade its performance; during the tests, numerical records tracking the automobile’s mechanical
state are registered;

3. [analysis] the engineers analyse the driving sessions’ records to identify the events that have
informed the drivers’ evaluations; once these events have been identified and their causes have
been traced back to the synthesis parameters, the engineers can apply changes to the synthesis
parameters to correct the undesired behaviours; the cycle starts over.

Each iteration of this development cycle is expensive and time-consuming. Hence, it is desirable not
only to reduce the number of iterations, but also to reduce the time spent on each iteration. In particular,
the qualitative nature of the questions submitted to the drivers and the high degree of subjectivity of the
answers make it extremely difficult and time-consuming to identify the events that informed the drivers’
evaluations. Moreover, attributing an evaluation to an incorrect event can mislead the identification of the
responsible synthesis parameters. The analysis step is thus a critical bottleneck for the whole development
cycle. In the following, we propose a formalisation of this problem.

We identify a vehicle with its mechanical setting, described by a tuple

(1) r = (r1, . . . , rNr)
′

of Nr synthesis parameters. We use the apex (′) to denote transposition. This vector is chosen from
some design space R. In our experiments we could modify Nr = 46 parameters. We used a simulation
environment to turn this vector into a virtual model of the vehicle, which we could load onto a driving
simulator.

We then asked a small number of professional pilots to perform specific manoeuvres with this vehicle
while completing some laps on a virtual circuit. The circuit was kept fixed to reduce the number of
factors that could impact the evaluations. During each test run, data from sensors (mainly accelerometers
and dynamometers) and actuators (steering wheel, brake and throttle pedals) was collected at a fixed
frequency, producing a record

(2) {z(t) = (z1(t), . . . , zNz(t))
′}t=1,...,T .

The components zh (h = 1, . . . , Nz) of the vectors z(t) are called channels. As described above, they
represent both data coming from sensors (passive channels) and from actuators (active channels). This
induces a natural split of (2) into two records composed of Nx- and Nc-dimensional vectors respectively
(where Nx +Nc = Nz):

{x(t) = (x1(t), . . . , xNx(t))
′}t=1,...,T ,(3)

{c(t) = (c1(t), . . . , cNc(t))
′}t=1,...,T .(4)

These time series describe the state of the vehicle and the control performed by the driver, respectively.
We suppose that the vectors x(t) and c(t) take values in subsets X ⊂ RNx , C ⊂ RNc . In our experiments
we collected data from Nx = 12 sensors and Nc = 3 actuators.

After each simulation, the driver who performed it was asked to answer a predefined survey

(5) Q = {q1, q2, . . . , qNq}

composed of Nq questions about selected handling properties (e.g., the stability of the vehicle during
overtaking manoeuvres). For each question, the answer y must be chosen amongst Ny possible options.
In our experiments the survey contained Nq = 22 questions, whereas the answers took values in the finite
scores space

(6) Y = {1, 1.5, . . . , 9.5, 10}

(Ny = 19). A higher score reflects a higher quality of the corresponding handling property.
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Due to a non-disclosure agreement, the precise nature of the synthesis parameters, the channels and
the specific experimental questions asked to the drivers can not be reported.

With this formalisation and assuming Nq = 1 (which amounts to assuming the Nq components of the
scoring are i.i.d.), we model a driver d as a measurement instrument fd used to evaluate a vehicle r:

fd : R → Y

r 7→ y .

Our experience shows that the evaluation process is non-deterministic: even the same driver could give
different feedbacks about the same vehicle setting r depending on the driving experience, personal biases,
and even the state of mind. Therefore, it is more natural to represent fd as a map

fd : R → P(Y )

r 7→ P(Y )

that outputs (discrete) probability distributions over the scores space. Here,

P(Y ) = (p(y1), p(y2), . . . , p(yNy))
′

denotes a probability mass function (PMF) taken from the space P(Y ) of all such functions over Y .
Humans are noisy controllers in the driving feedback loop. This implies that even if the vehicle setting

r, the driver d and the test circuit are the same, the records (3) and (4) will likely differ. Thus, the state
record is modelled as a random variable distributed according to the conditional probability p(x|r, d).

The second factor that needs to be incorporated into the model is the subjectivity of the scores. When
the driver is asked to evaluate a driving session, a personal evaluation scale and the individual state of
mind can inform the decision. For example, the same vehicle r could be assigned a 7.0 by a driver d1 and
a 5.5 by a second driver d2. Another example: suppose that a driver has assigned the latest car setting
he tested, r1, a 6.5, but that he had also tested a particularly good-performing vehicle r2 before trying
the current setting; if r2 had been particularly poor-performing instead, he could be willing to assign r1
a 7.5. We model this subjectivity with the conditioning p(y|x, d).

The distributions p(r) and p(d) are assumed to be independent: in fact, the vehicles can be arbitrarily
defined by engineers, whereas the population of the drivers is determined by nature and experience.

D

Y Y

(a) (b)

X X

R R

Figure 1. Graphical models describing the problem. If we suppose that the circuit is kept fixed, (a) the vehicle setting R
and the driver D interact to generate a driving experience X, which is then evaluated by the driver to return a score Y
about the quality of the vehicle setup; (b) if we suppose the distributions of the driving experiences and the scores do not
depend on the driver, then we have a simplified model where the final evaluation can be inferred directly from the driving
experience.

The discriminative process carried out by the drivers can be modelled as depicted in Figure 1(a):

(7) p(y,x, r, d) = p(y|x, d)p(x|r, d)p(r)p(d) .
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The fact that the drivers hired to evaluate vehicles are professionals is not a chance: they represent the
least subjective measurement instruments available on the market.

The drawbacks of these instruments are their scarcity and their cost. Therefore, we did not have
sufficient data to characterise the distribution p(d). We thus simplified the model (7) by integrating over
the set of all possible drivers, deriving the simplified model depicted in Figure 1(b). Its joint distribution
is the following:

(8) p(y,x, r) =

∫
D
p(y,x, r, d) = p(y|x)p(x|r)p(r) .

We anyway observe that the richer model (7) could be used when scaling the analysis to big data collected
from a larger set of drivers. The interpretation of the factors in expression (8) should clarify the scope of
our work.

The term p(x|r)p(r) = p(x, r) characterises the impact of the mechanical setup on the driving experi-
ence. Automotive engineers can use their domain knowledge to tune the setup r to reduce the probability
of certain experiences x happening [1]. For example, if the problem turns out to be the perceived torque on
the steering wheel, engineers should modify the synthesis parameters which can impact this characteristic.

The leftmost term

(9) p(y|x)

is the least quantifiable, in the sense that even a professional pilot could have a hard time telling which
parts of the experience x concurred more to the final evaluation. Typically, the pilot points out subsec-
tions of the test circuit where he believes the vehicle behaved anomalously; then, the engineers start a
time-consuming and tedious analysis of the record (2) to identify the physical causes of the perceived
anomalies. Thus, we focused on the development of a deep learning model that not only could reproduce
the discriminative model (9), but could also “show” which portions of the record (3) informed its output
the most.

In Section 2, we review the background literature and related research. In Section 3, we describe our
proposed system. In Section 4, we analyse the output of the model. Finally, in Section 5, we discuss some
additional properties of the technique and open research questions.

2. Related work

The problem of modelling the human driver has been extensively studied [2]. This research, though,
was not directed towards modelling the relationship between the mechanical state of a vehicle and the
subjective perceptions of the vehicle’s handling properties. To the best of our knowledge, no closed-form
description of such a relationship is known.

Deep learning (DL) has gained a reputation as a powerful tool to model non-linear relationships in
big data sets [3–5], and the automotive market has not remained indifferent to its effectiveness. Apart
from autonomous driving (AD) and advanced driver assistance systems (ADAS), sensor data analytics
has been investigated.

Driving styles clustering and classification are interesting applications for both road safety monitoring
and insurance purposes. Existing research works preprocessed time series GPS data to extract information
about velocities and accelerations, then used it to train deep neural networks (DNNs) to identify driving
styles [6,7]. The chosen DL systems follow a hierarchical structure typical of neural machine translation
models: the input time series is split into windows creating paragraphs, each of which is then summarised
into a single vector using a recurrent neural network (RNN). This paragraph-level information is then
further compressed using autoencoders [8], and the resulting sequences of vectors are interpreted as
documents ready to be classified.

The first difference between these works and ours is the scope: whereas the aim of the systems above
is classifying driving styles from GPS data, we analyse sensor data to understand which features of the
vehicle’s mechanical state history inform the driver’s subjective perceptions.
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The second difference is in the architecture of the DL system itself, which reflects our goal: we need
a system which can point us to those parts of its input which are the most influential on its output.
First, RNNs lack the capability of quantifying the importance of an input vector with respect to the
others. Hence, we had to select alternative techniques to perform the temporal processing. In addition,
we give the state vectors x(t) the geometric interpretation of points lying on a curve embedded in a
high-dimensional space. Therefore, our system first projects these points into a lower-dimensional space
using autoencoders, then feeds them to the layers responsible for temporal information processing.

Dimensionality reduction studies unsupervised learning techniques that can discover low-dimensional
structures in high-dimensional data. Autoencoders are DNNs that learn an encoder map ϕenc : RN → RM

(M ≪ N) to compress input vectors x ∈ RN into lower-dimensional counterparts y ∈ RM . Autoencoders
are trained to minimise the squared Euclidean distance

d2(x, ϕdec(ϕenc(x))) = ∥x− ϕdec(ϕenc(x))∥2

between the original vectors and the reconstructed ones (the map ϕdec : RM → RN is called a decoder).
Denoising autoencoders [9] are more robust autoencoders trained to reconstruct the original vectors
x even when they receive noisy versions x+ ν in input (ν is usually a zero-mean noise).

Attention mechanisms [10] are a powerful DL tool to process temporal information. Apart from
the improved stability during training with respect to RNNs, attention mechanisms intrinsically define a
PMF over their input sequences. An attention mechanism takes in input sequences of vectors {x(t)}t=1,...,T

and compares each element with a query vector q using the Euclidean inner product. These values are
then passed through a softmax function yielding a PMF over the elements of the sequence:

(10) p(t̄) =
exp ⟨q,x(t̄)⟩∑T
t=1 exp ⟨q,x(t)⟩

, t̄ = 1, . . . , T .

This PMF is used to perform a soft query against the “database” represented by the sequence, returning
the weighted average

x̄ =

T∑
t=1

p(t)x(t) .

Research on convolutional neural networks (CNNs) has introduced tools to understand which parts of
the inputs to a feedforward network impact its output the most. In particular, the saliency maps tech-
nique [11] defines PMFs on the data structures taken as input by a given network. Suppose a feedforward
network ϕ realises a differentiable scalar map

ϕ : RN → R

on some N -dimensional Euclidean space, and suppose we need to know which parts of the input x ∈ RN

we should change to get a target change δ ∈ R in the output. If we denote by

g := ∇xϕ =

(
gi :=

∂ϕ

∂xi

)′

i=1,...,N

the gradient of ϕ with respect to x, the saliency map of ϕ with respect to the target change δ is a PMF
over {1, . . . , N}:

(11) p(̄i) =
|gī|∑N
i=1 |gi|

, ī = 1, . . . , N .

We can combine saliency maps and attention mechanisms to output a PMF over the data structure
representing (3), as we will describe in Section 3.

Other methods to simplify and visually analyse time series are available in the literature. Piecewise
aggregate approximation (PAA) [12] partitions a continuous time series in windows and replaces them
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with the respective window averages, thus reducing the dimensionality of the data. As an extension
of PAA, symbolic aggregate approximation (SAX) [13] analyses the uni- or multi-variate distribution
generated by PAA and uses its quantiles to partition real variables into symbols of a finite alphabet.
These transformations are used to turn real-valued time series into strings which can be analysed to
identify recurrent substrings (corresponding to temporal features ormotifs). VizTree [14] is a visualisation
method designed to identify recurrent substrings in a given string.

With respect to our approach, these techniques drop the geometric interpretation of the time series,
and they require training a separate classifier for the generated strings. Even though VizTree can focus
the attention on recurrent motifs of the input time series, it does not return information about their
importance for the classifiers trained on the series.

We remark that the problem we wanted to solve poses unique challenges. We were not able to find
other techniques which could be directly applied to our task, and whose performances could be compared
to our solution.

3. A deep learning system for the analysis of handling performances

Before describing our proposed DL system, we describe the data set we used for this project. We do
this for two reasons: first, its structure motivated the modelling process described later in this section, and
second, this brief discussion also clarifies certain details of the experiments which we report in Section 4.

The data set The data for this project was collected by a single test driver who performed all the
driving simulations. We kept the circuit fixed to reduce the number of factors which could impact his
evaluation.

We experimented with 24 different mechanical settings r. For each vehicle setting, the driver performed
an average of four driving experiences, collecting K = 89 records (2) in total. We note that the driver
assigned scores only once for each of the 24 vehicle settings, after all the driving experiences; therefore,
we labelled with the same scores all the records associated with a given setting.

We ran the simulator at a sampling frequency f = 1000Hz, and the collected records contained on
average T ∼ 75000 vectors with 12 components for sensors (passive) and 3 components for actuators
(active), for a total amount of approximately 6.5 million 15-dimensional vectors.

An end-to-end machine learning system would likely overfit on such a data set, due to the unbal-
ance between the high dimension of the input space and the small number of available labelled points.
Therefore, we needed to design suitable features to make the final classifier more robust.

Not all the driving experiences had the same duration, and not all of them represent complete laps
on the test circuit. To simplify the design of our model, we defined the following homogenisation and
selection operations on the records.

To each vector z(t), the driving simulator attaches information about the relative position of the
vehicle with respect to the test circuit’s starting line, in the form of a curvilinear abscissa ς(t). Since
the test circuit had a fixed length, we set fixed sampling positions ς1 < . . . < ςS , called the waypoints.
Given a record {z(t)}t=1,...,T and a waypoint ςs, s ∈ {1, . . . , S}, we defined

z(s) := (1− λ)z(t(s)) + λz(t(s) + 1) ,

where

t(s) := t ∈ {1, . . . , T} | ςs ∈ [ς(t), ς(t+ 1)) ,

λ :=
ςs − ς(t(s))

ς(t(s) + 1)− ς(t(s))
.

With this procedure, we were able to trasform the original (time-aligned) records

{z(k)(t)}t=1,...,T (k) , k = 1, . . . ,K
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into homogenised (waypoint-aligned) records

(12) {z(k)(s)}
s=ς

(k)
start,...,ς

(k)
end

, k = 1, . . . ,K .

Here, k = 1, . . . ,K indexes the collected records. The homogenised state records (3) and homogenised
control records (4) can be redefined accordingly.

Given two waypoints ςA, ςB | 1 ≤ ςA < ςb ≤ S which delimit a specific portion of the test circuit, it
is possible to identify all and only the homogenised records (12) corresponding to those k ∈ {1, . . . ,K}
such that

ς
(k)
start ≤ ςA < ςB ≤ ς

(k)
end .

We call this process a selection of the records which describe the circuit portion delimited by ςA and ςB.
To simplify the notation, we will use the indexing in T and talk of original records and homogenised

records to distinguish between the two.
We used this homogenisation and selection operations extensively during the modelling and experi-

mental activities, as we will report below.

The target model Let T denote a positive integer and X ⊂ RNx a subset of the Nx-dimensional
Euclidean space. We denote by X0 = (X)T the set of finite trajectories {x(t)}t=1,...,T of length T sampled
from the space X. Note that these vector sequences can be represented as a collection of Nx scalar
sequences

{xh(t)}t=1,...,T , h = 1, . . . , Nx .

We denote by

(13) U = {(h, t) |h = 1, . . . , Nx , t = 1, . . . , T}

the index space that identifies their components. Let Y denote a set of scores (6).
We want to build a system that, given a state record (3), outputs a PMF over Y and a PMF over U :

Φ : X0 → P(Y )× P(U)

{xt} 7→ (P(Y ),P(U)) .
(14)

As previously observed, the very small number of labelled data is the critical issue we need to be
aware of when designing the model. Increasing either naturally , i.e., collecting additional data points, or
artificially, i.e., applying some generative model to create synthetic data points, might seem a mandatory
task to increase the robustness of the results, but in both cases there are practical and theoretical
shortcomings. As concerns the collection of additional data points, one should develop a virtual model of
the car, design a software capable of running the simulation, and hire one or more professional pilots to
collect feedback about the vehicle. These requirements would lead to a notable budget (the cost of each
data point is in the order of thousands or tens of thousands of euros, and the cost of the data set scales
linearly in the number of data points) and excessively long time constraints. Moreover, generative models
such as generative adversarial networks (GANs) are trained under the supervised learning paradigm, not
the unsupervised one. Thus, training a generative model requires a corpus of observed natural data points
that is sufficient to approximate the unknown probability distributions, and this is not our case for the
reasons highlighted before.

As a result of these considerations, we designed a model able to exploit the structure and semantics
of the (few) available data points. In particular, the DL system we designed to learn Φ is composed of
three stages:

1. a trajectory condenser;
2. a local trajectory analyser;
3. a global trajectory classifier.
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Trajectory condenser The records (3) are composed of 12-dimensional vectors x(t). We preprocessed
each vector using the standard affine transformation

x̃(t) := Σ−1(x(t)− µ) ,

where µ is the component-by-component average over any example in the training set and over any
time, and Σ is the diagonal matrix whose element σhh represents the standard deviation of the h-th
component of such vectors. In the following, to simplify the notation, we suppose the vectors x(t) are
already normalised and thus identify x̃(t) = x(t).

The trajectory condenser should map trajectories in the Nx-dimensional Euclidean space into trajec-
tories in the Ne-dimensional Euclidean space, where Ne ≪ Nx:

φ1 : (RNx)T → (RNe)T .

To this end, we trained a denoising autoencoder

ϕ1
4 ◦ ϕ1

3 ◦ ϕ1
2 ◦ ϕ1

1 : RNx → RNx

(◦ denotes composition), where ϕ1
enc := ϕ1

2 ◦ ϕ1
1 is the encoding map and ϕ1

dec := ϕ1
4 ◦ ϕ1

3 is the decoding
map. The layers corresponding to the maps ϕ1

1, ϕ
1
3 contain 10 neurons each. To set the dimension Ne of

the encoding space (i.e., the number of neurons in the layer corresponding to ϕ1
2), we applied a technique

from the field of manifold learning to our data set and got an estimate of Ne = 4 [15]. First, the tech-
nique sub-samples the available data sets with different sampling frequencies; then, for each sub-sample
and candidate dimension, it uses a corresponding bounded support kernel function to collect statistics
associated with the given sub-sample at a properly-chosen scale; finally, it estimates the dimension as the
candidate dimension for which the collected statistics are most stable across different scales. Since the
underlying hypothesis of this technique are hard to test in practice, we used it to establish a reasonable
prior for the dimension of the encoding space, as opposed to guessing it or trying out all the possible
dimensions, but we resorted to the autoencoder loss as an indirect measure of the estimate’s quality. All
the layers except the last are activated by the hyperbolic tangent function.

To create the data sets needed to train this autoencoder, we used all the vectors x(t) contained in
the available original records {x(k)(t)}t=1,...,T , k = 1, . . . ,K. We put 80% of the available vectors in the
training set, creating pairs (x(t)+ν,x(t)) where ν denotes a noise vector whose components were sampled
from a univariate Gaussian distribution with µ = 0 and σ = 0.01. We used the remaining 20% of the
vectors as a validation set to perform early stopping of the training algorithm.

We trained the network minimising the mean square error (MSE) loss, applying the Adam optimiza-
tion algorithm [16] with a learning rate η = 0.001 and a batch size B = 25 for n = 500 epochs.

The trajectory condenser

φ1 : X0 7→ X1

{x(t)}t=1,...,T 7→ {x1(t) := ϕ1
enc(x(t))}t=1,...,T

(15)

is obtained by a pointwise application of the encoder to all the points of the trajectory. Here,X1 ⊂ (RNe)T .
The output sequence

(16) {x1(t)}t=1,...,T

is called the condensed trajectory.
Let J := (gj := ∇xϕ

1
enc,j)j=1,...,Ne denote the Jacobian of ϕ1

enc. Since gj describes how changes in

the input x(t) affect ϕ1
enc’s j-th component, we can weight the columns of J using the actual changes

δ(t) := x1(t+ 1)− x1(t) that occur in the feature space, obtaining the directional gradient

g = Jδ(t) .
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At this point, we apply the saliency maps technique (11) to obtain a PMF over {1, . . . , Nx}:

(17) pϕ1
enc

(h̄) =
|gh̄|∑Nx
h=1 |gh|

, h̄ = 1, . . . , Nx ,

where gh denotes the h-th component of g.
The intuition behind this choice is that the directional gradient should provide information about

which changes in the space of the passive channels X0 are deemed relevant by the autoencoder and
therefore mapped to the feature space X1.

Trajectory analyser Discussions with the driver suggested that his final evaluations are based on a
sequence of perceptions collected during the test, plus some global contextual information (e.g., the time
required to complete a lap on the test circuit). We thus modelled the evaluation task (i.e., the assignment
of a score to a vehicle) as a supertask accomplished using information collected while performing simpler
subtasks, hierarchically.

The natural subtasks we selected are the controls c(t) actuated by the driver on the vehicle: we
assumed that the information used by the driver to control the vehicle informs his final evaluation.
This hierarchical composition of information, from subtasks to supertasks, has already been applied
successfully to document classification using hierarchical attention mechanisms [17].

We preprocessed the homogenised control records (4) to create the training targets. The controls c(t)
are 3-dimensional vectors representing the steering angle, the amount of pressure on the brake pedal and
the amount of pressure on the throttle pedal. Since the brake pedal and the throttle pedal are used in
a mutually exclusive way, we combined them into a single acceleration control variable ranging in the
continuous interval [−1,+1], with −1 corresponding to full brake and +1 corresponding to full throttle.
In the same way, the steering angle variable was scaled to take values in the interval [−1,+1], with −1
corresponding to full left and +1 corresponding to full right. In this way, the control c(t) was represented
as a two-dimensional vector taking values in the set [−1,+1]2 ⊂ R2.

If T denote the length of the condensed trajectory (i.e., the number of waypoints considered), we
denote by W < T an integer window size such that T = LW , with L a positive integer. This choice
allows to partition the condensed trajectory (16) into L non-intersecting contiguous subsequences called
windows:

(18) υℓ = {x1((ℓ− 1)W + 1), . . . ,x1(ℓW )} , ℓ = 1, . . . , L .

The intuition is that a window should provide a description of the state of the automobile on the localised
sequence of waypoints {ς(ℓ−1)W+1, . . . , ςℓW }.

We trained a predictive model

(19) ϕ2
2 ◦ ϕ2

1 : (RNe)W → [−1,+1]2

to mimic how the driver controls a car depending on its mechanical state. The first map

ϕ2
1 : (RNe)W → RNe

υℓ 7→ x2(ℓ) =
ℓW∑

t=(ℓ−1)W+1

pϕ2
1
(t)x1(t)

(20)

is an attention mechanism (10) parametrised by q2
1 ∈ RNe , whereas

ϕ2
2 : RNe → [−1,+1]2

x2(ℓ) 7→ c̃(ℓW + 1)

is a hyperbolic tangent-activated regression layer trained to predict the control c(ℓW + 1) actuated by
the driver at the immediately successive waypoint with respect to the analysed window υℓ.
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To create the data sets needed to train this network, we first passed all the homogenised records
{x(k)}t=1,...,T , k = 1, . . . ,K through the trajectory condenser (15), obtaining condensed trajectories
{x1(k)(t)}t=1,...,T , k = 1, . . . ,K. Then, we selected 80% of these condensed trajectories to create the
training set and used the remaining 20% to create the validation set. From each condensed trajectory,
we extracted all the windows of length W with unconstrained extrema,

υt̄ := {x1(k)(t)}t=t̄+1,...,t̄+L

(i.e., we did not limit t̄ = (ℓ − 1)W , ℓ ∈ {1, . . . , L} as it is done at inference stage). We attached the
appropriate control labels c(t̄+L+ 1), to both training and validation samples, and used the validation
set to perform early stopping.

We minimised the MSE loss applying the Adam optimization algorithm with a learning rate η = 0.001
and a batch size B = 10 for n = 20 epochs. We set a window size W = 10, determined empirically.

The trajectory analyser is realised applying (20) to every window that partitions the condensed
trajectory:

φ2 : X1 7→ X2

{x1(t)} 7→ {x2(ℓ)} := {ϕ2
1(υ1), ϕ

2
1(υ2), . . . , ϕ

2
1(υL)} ,

(21)

being X2 ⊂ (RNe)L. The sequence

(22) {x2(ℓ)}ℓ=1,...,L

is called the compressed trajectory. The intuition is that these features should encode some of the
information used by the driver to control the car along the test circuit.

Note that the application of (20) to the windows (18) generates L PMFs over {1, . . . ,W}, one for
each window that partitions the condensed trajectory:

(23) {pϕ2
1
(t) , t = (ℓ− 1)W + 1, . . . , ℓW}, ℓ = 1, . . . , L .

In this way, a local importance measure is assigned to each vector of the condensed trajectory taken as
input.

Trajectory classifier The standard way to train a classifier using DNNs is turning the classification
problem into a multinomial logistic regression. To this end, class labels yj ∈ Y are turned into points
of the Ny-dimensional simplex using the so-called one-hot encoding, and the model is then trained as a
regression model on the simplex. One-hot encoding a class label yj ∈ Y is performed by transforming it
into a Ny-dimensional vector whose j-th component takes value one, whereas the others are set to zero.
This transformation is equivalent to defining a PMF P(Y ) which assigns probability one to the j-th class
and zero to the others.

The goal of the trajectory classifier is using the local information contained in compressed trajectories
(22) to generate probability distributions P(Y ) over Y :

φ3 : (RNe)L → P(Y )

{x2(ℓ)} 7→ P(Y ) = (p(y1), p(y2), . . . , p(yNy)) .
(24)

Similarly to (19), we implemented it using a two-layer neural network:

ϕ3
2 ◦ ϕ3

1 : (RNe)L → P(Y ) .

The map

ϕ3
1 : (RNe)L → RNe

{x2(ℓ)} 7→ x3 =
L∑

ℓ=1

pϕ3
1
(ℓ)x2(ℓ)

(25)
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is an attention mechanism (10) parametrised by q3
1. The second map is instead a classification layer:

ϕ3
2 : RNe → P(Y )

x3 7→ softmax(w3
2x

3 + b3
2) ,

where w3
2 ∈ RNy×Ne is the weight matrix, and b3

2 ∈ RNy is the bias vector.
The data sets used to train the trajectory classifiers are described more in-depth in Section 4.
In all our experiments, we trained the trajectory classifiers using the cross-entropy (CE) loss and

applying the Adam optimization algorithm with a learning rate η = 0.001 for n = 350 epochs. Note that
the application of (25) returns a probability distribution over {1, . . . , L}:

(26) pϕ3
1
(ℓ) , ℓ = 1, . . . , L .

In this way, each window that partitions the condensed trajectory is assigned a relative importance with
respect to the others, quantifying its contribution to the final classifier.

Heatmap construction The second function that (14) should implement is the generation of a prob-
ability distribution over the coordinates space (13) associated with the record data structure (3).

For every waypoint t = 1, . . . , T , let ℓ(t) denote the window to which the corresponding vector x1(t)
belongs:

ℓ(t) := ℓ ∈ {1, . . . , L} | (ℓ− 1)W + 1 ≤ t ≤ ℓW .

We combine (17), (23) and (26) to get the heatmap:

(27) p((h, t)) := pϕ1(h)pϕ2
1
(t)pϕ3

1
(ℓ(t)) , (h, t) ∈ U .

The resulting map Φ := φ3 ◦φ2 ◦φ1, obtained composing (15), (21) and (24) is depicted in Figure 2.
We end this section with few considerations about lack of data and possible overfitting. Although we

are aware that only 24 labelled data points have been provided for our analysis, each data point has a
complex structure made up by a large number of observations, and this is exploited by the trajectory
compressor. Note that to train a denoising autoencoder we use each (noisy) input training point as its own
label, in what we could call a “self-supervised” fashion. Since we can create a training pair (t+ ε, t) for
each observation in all the available trajectories, we have access to a data set containing approximately
5M observations, whereas the denoising autoencoder uses less than 400 parameters. Moreover, since
the trajectory compressor operates on each observation independently of the neighbouring ones, the
interpretation of the input sequence as a trajectory translates also into the abstract feature space (i.e.,
the encoding space of the autoencoder). Since the trajectory compressor maps time series to a lower-
dimensional space, the number of parameters required to process a sub-sequence of given length is reduced
by the compression factor of the autoencoder.

Then, each trajectory in the feature space is cut into consecutive windows, which are processed again
by a unique feature extractor model. In this way, we start mixing temporal information while sharing the
parameters across different time windows. Since each observation t carries information about both passive
and active channels, we can use the values of the active channels as fine-grained labels for supervised
training (as opposed to the unique score label y associated with the record x from which the observation
t is taken). In our case, by considering windows of length L = 10, we had access to hundreds of thousands
of windows, each of which was labelled with the driver’s controls at the end of that sub-trajectory. Given
that the trajectory analyser uses just a few tens parameters, the risk of overfitting should be low.

4. Experimental results

To turn the synthesis parameters (1) into virtual vehicle models, we used a vehicle modelling custom
tool developed internally by Maserati. Our professional driver performed the driving experiences using
the industrial VI-grade Static Simulator [18]. We implemented, trained and tested our networks using
the TensorFlow framework [19].
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Figure 2. The proposed deep learning system for the analysis of handling properties. The trajectory condenser φ1 reduces
the size of each point in the input trajectory (the first blue rectangle); the trajectory analyser φ2 summarises local portions
of the driving experience into fewer feature vectors; the trajectory classifier φ3 outputs a probability mass function P(Y ) =
(p(y1), p(y2), . . . , p(yNy

)) over the scores space, representing a global evaluation of the driving experience. Yellow trapezoids
represent attention mechanisms.

Model parameters In the following, we provide a summary on the computational details of our deep
learning models. In details, the autoencoder uses 356 parameters, 174 for the encoder (i.e., the trajectory
compressor) and 182 for the decoder:

• ϕ1
1 has a 10× 12 weight matrix and a 10-component bias vector;

• ϕ1
2 has a 4× 10 weight matrix and a 4-component bias vector;

• ϕ1
3 has a 10× 4 weight matrix and a 10-component bias vector;

• ϕ1
4 has a 12× 10 weight matrix and a 12-component bias vector.

The second model uses 14 parameters:

• ϕ2
1 (i.e., the trajectory analyser) has a 4-component query vector;

• ϕ2
2 has a 2× 4 weight matrix and a 2-component bias vector.

The last model (i.e., the trajectory classifier) uses 4 + (4 + 1)Ny parameters:

• ϕ3
1 has a 4-component query vector;

• ϕ3
2 has a Ny × 4 weight matrix and a Ny-component bias vector.

The data sets used to train the different models have the following characteristics:

• autoencoder: ∼ 5.3M points for the training set, ∼ 1.3M points for the validation set; each input
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and label is a 12-dimensional vector;
• second model: ∼ 380k points for the training set, ∼ 95k points for the validation set; each input
is a (4× 10)-dimensional array, whereas each label is a 2-dimensional vector;

• last model: ∼ 20 points for the training set, ∼ 2/3 points for the validation set; the size of the
training set is increased by a factor of 20 by means of output augmentation, yielding ∼ 400 points;
each input is a (4× 1000)-dimensional array, whereas each label is a Ny-dimensional vector.

Note that the last model is trained multiple times, once for each cross-validation fold.

Model training At the beginning of Section 3 we reported that the records (3) which describe driving
experiences were not scored independently. Instead, records related to the same vehicle setting r share
the same scores. Therefore, when creating the data sets to train and validate the trajectory classifiers,
we deemed it important to partition the records in such a way that records describing the same vehicle
setting did not appear simultaneously in the training set and in the validation set.

We also reported that we were able to test only 24 vehicle settings. Combining these two observations
(the small number of tested settings and the statistical requirement of not mixing observations about the
same setting), we decided to avoid creating a test set, and instead used cross-validation [20] to estimate
the performances of our system. Therefore, we applied the following procedure to the experiments we
will describe below.

First, we split the vehicle settings in D = 10 folds. If we denote by d̄ ∈ {1, . . . , D} a given fold,
X(d̄) denotes the collection of the homogenised records x(k) related to the vehicles belonging to the d̄-th

fold, whereas X
(d̄)

:=
⋃

d ̸=d̄X
(d) denotes the collection of the homogenised records related to vehicles not

belonging to the d̄-th fold.
Then, in each experiment and depending on the goal of the experiment, we identified a portion of

the test circuit on which to train and validate our system. The portions were delimited by waypoints
ςA, ςB | 1 ≤ ςA < ςB ≤ LW . We identified window indices

ℓA := argmax
ℓ∈{1,...,L}

{(ℓ− 1)W + 1 ≤ ςA} ,

ℓB := argmin
ℓ∈{1,...,L}

{ςB ≤ ℓW} ,

and defined

ςstart := (ℓA − 1)W + 1 ,

ςend := (ℓB)W ,

so that from each fold X(d) we could select only the records covering all the waypoints ς , ςstart ≤ ς ≤ ςend.
This selection operation was such that the application of the trajectory condenser (15) and the

trajectory analyser (21) always returned compressed trajectories (22) of fixed length ℓB − ℓA + 1. Note
that (17) and (23) are computed for all the records by these two stages of the system.

Finally, to train and validate the classifiers, we took the following steps. For each fold d = 1, . . . , D,

1. we performed data augmentation on the labels of the records in X
(d)

, to increase the number of
available training points;

2. we trained a trajectory classifier (24) on top of this set;
3. we collected the desired statistics (accuracy and heatmaps (27)) on the outputs corresponding to

the records in X(d).

To perform the label augmentation on the records in a given fold’s training set X
(d)

we reasoned
as follows. Although professional pilots are the least subjective measurement instruments to assess the
handling properties of a new car prototype, they still suffer from subjective biases and uncertainties.
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Therefore, we applied a small amount of additive noise to the original scores. Introducing a small amount
of noise into the labels has been shown to be beneficial when training supervised learning models [21].

For each record/score pair (x, y) in the training set, we sampled 20 alternative labels from a truncated
univariate Gaussian distribution with extrema a = 1.0 and b = 10.0, using the score y as the mean and
a standard deviation σ = 0.2 (this parameter was kept small to account for the relative precision of the
drivers as measurement instruments). The sampled values were then rounded to the nearest elements in
the scores set (6), and turned into a one-hot encoded binary vector.

Results In Section 1, we reported that the driver had to answer a survey (5) composed of Nq = 22
questions after each simulation. We refer to each question q ∈ Q as to a handling property. Remember
that every handling property admits answers in the scores set (6).

In our first experiment, we wanted to investigate the accuracy of the system and test its interpretabil-
ity. Therefore, we selected a specific question q̄ ∈ Q and asked the driver to identify the portion of the
test circuit that he thought was the most important for evaluating this specific handling property. This
portion was determined by its extremal waypoints 1 < ςA < ςB < LW (i.e., it did not cover the complete
circuit). Then, we trained trajectory classifiers φ3(q̄,d) , d = 1, . . . , D, for the handling property q̄ on the
resulting reduced condensed trajectories.

The accuracy estimated by cross-validation was 31.4%, which increased to 80.0% when we considered
whether the driver’s actual score was amongst the three most probable scores predicted by the model.
As a comparison, a random guess in the range of the most common scores (from 5.5 to 8.5, for a total
of seven classes) would be correct around 15% of the times, rising to 45% if we had three guesses. These
figures would drop to around 5% and 15%, respectively, for guesses on the complete scores set (6): the
performance of the classifier is remarkable.

To give an idea of the output of our system, in Figure 3 and Figure 4 we report the output for an
example validation point. Figure 3 depicts the prediction on the scores set (6). For each score class y ∈ Y ,
the model outputs the probability p(y) that the input driving experience {x(t)}t=1,...,T will be given score
y: the higher the probability, the more confident the model is that the record will be given that score.
Figure 4 depicts instead the application of the heatmap output (27) generated by the model to interpret
and understand the score prediction: the higher the value of the heatmap, the more vivid an array value
will be in Figure 4(d). More vivid colours indicate that the corresponding input values contributed more
to the feature vector used by the trajectory classifier to predict the scores.

Figure 3. The model using the trajectory classifier φ3(q̄,d) is pretty confident that the input record will be given a score
ranging from 7 to 8 (large bars). The driver actually scored the handling property q̄ for this setting with a 7.5 (thin bar).
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Figure 4. An example heatmap output of the model using the trajectory classifier φ3(q̄,d). This heatmap was computed on
the same data point for which the scores predictions are depicted in Figure 3. (a) The array data structure describing sensors
data: different lines represent different physical quantities, with lower values represented in blue and higher values in red;
different columns represent samples at different waypoints. (b) The PMFs (23) and (26) computed by the attention modules
and (c) the saliency maps associated with the autoencoder are combined to get a heatmap (27). Bright cells indicate high
importance of the corresponding component, whereas dark cells indicate low importance of that component. The heatmap
can be multiplied pointwise with the input array, yielding (d) the final visual aid to understand which waypoints and which
physical quantities contributed the most to the classification. In this particular example, channels h = 3, 4, 5, 9 appear to be
the most relevant, especially at waypoints ς in the ranges {875, . . . , 900} and {990, . . . , 1025}.

With the second experiment, we wanted to understand which physical properties are the most impor-
tant for the system when it evaluates different handling properties. To investigate the natural distinctions
made by the system, we trained 22 trajectory classifiers (one for each handling property) using the same
input records.

We did not choose distinct portions 1 ≤ ς
(q)
A < ς

(q)
B ≤ LW for each handling property q ∈ Q. Instead,

from each fold X(d) , d = 1, . . . , D, we selected the records

{x(k)(t)}t=1,...,ℓW

describing complete laps on the test circuit.
For each handling property q̄ ∈ Q, we then proceeded as follows. For each fold d = 1, . . . , D, we

trained a trajectory classifier φ3(q̄,d) on X
(d)

and computed the heatmaps (27) for all the points in the
corresponding validation set X(d):

p(q̄,d,k)(h, t) |x(k) ∈ X(d) .

We then computed the PMFs over the set of channels {1, . . . , Nx} by reducing over the waypoints (tem-
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poral) dimension:

p(q̄,d)(h) :=
1

|X(d)|
∑

x(k)∈X(d)

T∑
t=1

p(q̄,d,k)(h, t) , d = 1, . . . , D .

Finally, we averaged these statistics to estimate the importance assigned by the system to the different
channels for property q̄ ∈ Q:

p(q̄)(h) :=
1

D

D∑
d=1

p(q̄,d)(h) .

The results for all the Nq = 22 handling properties are reported in Figure 5. Although we cannot
disclose the identity of the channels h nor of the handling properties q, this plot shows interesting
characteristics of the system. For example, the trajectory classifiers associated with the stability of the
running direction tend to assign more mass to the physical quantities related to longitudinal accelerations.
Instead, the trajectory classifiers associated with entering or exiting turns tend to assign more mass to the
physical quantities related to vehicle speed and pitch. These and other insights resulted very helpful in
the design process since they allowed to modify the mechanical setting (1) to improve multiple handling
properties simultaneously, reducing the number of experimental iterations required to converge to a new
car model design.

Figure 5. The trajectory classifiers built to predict different handling properties q ∈ Q assign different importance to
the passive channels h = 1, . . . , Nx. Different colours represent different driving regimes (e.g., driving on straightaways or
performing sporty driving manoeuvres). Higher columns indicate that more mass is put by the model on the corresponding
channels.

5. Conclusions

The luxury car market is a challenging business-to-consumer (B2C) market which requires its play-
ers to continually improve the user experience. Keeping the strategic initiative in such a competitive
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environment requires accurate, fast, and possibly cheap product development processes. Tools that al-
low engineers to prioritise their efforts on the most relevant tasks can accelerate the design-test-analysis
development cycle.

We designed a novel tool to classify records of driving sessions while maintaining the interpretability
needed to identify the physical events inducing these classifications. The amount of available labelled
data was insufficient to create an end-to-end machine learning system without the risk of overfitting.
Therefore, we designed a hierarchical feature extraction system composed by an unsupervised stage (the
trajectory condenser) and a first supervised stage (the trajectory analyser). The features extracted by
these two stages appeared sufficiently robust to train accurate trajectory classifiers on top of them. The
modular structure also has the side effect of facilitating the transfer of intermediate representations to
the analysis of different handling properties.

The system combines saliency maps and attention mechanisms to define PMFs over the input data
structures. We used these functions to highlight those parts of the input sequences that impact the
outputs of the model the most. We investigated the importance assigned by the trajectory classifiers
corresponding to different handling properties to the measured physical quantities: the results suggest
that there might be correlations amongst properties which are typically evaluated by drivers during
different driving regimes.

Incorporating global information (e.g., the time required to complete a test lap) into our handling
performances analysis system could help improve its performance. Indeed, our experience and recent
research [22] suggest that human evaluation processes are also influenced by global contextual information.
It is unclear, though, how such an integration should be performed.

We interpreted the records as samples from manifolds embedded in high-dimensional spaces. Typically,
the physical state of automobiles is also conditioned on categorical variables (e.g., the gear set). We
hypothesise that these variables could induce heterogeneity in the space of trajectories, making it an
ensemble of possibly intersecting manifolds indexed by the levels of the categorical variables. If this were
the case, the description of the vehicle state space, which we now obtain using a simple autoencoder,
could be refined. For example, an analysis of the impact of the synthesis parameters or of different
“driver archetypes” (e.g., standard consumer, amateur driver, professional driver) on the structure of
these geometric descriptions could also be performed if more data were available.

We observe that our system’s architecture could be applied to a broader class of tasks than the one
presented in this paper. In principle, every problem which can be modelled as a hierarchical extraction
of information from a time series taking values in a given Euclidean space is a suitable candidate for the
methodology.
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