Focused ion beam induced deposition (FIBID) is a direct-write technique enabling the growth of individual nanostructures of any shape and dimension with high lateral resolution. Moreover, the fast and reliable writing of periodically arranged nanostructures can be used to fabricate devices for the investigation of collective phenomena and to design novel functional metamaterials. Here, FIBID is employed to prepare dc-Josephson junction arrays (dc-JJA) consisting of superconducting NbC dots coupled through the proximity effect via a granular metal layer. The fabrication is straightforward and allows the preparation of dc-JJA within a few seconds. Microstructure and composition of the arrays are investigated by transmission electron microscopy and energy dispersive X-ray spectroscopy. The superconductor-to-metal transition of the prepared dc-JJA is studied in a direct way, by tuning the Josephson junction resistance in 70 nm-spaced superconducting NbC dots. The observed magnetoresistance oscillations with a period determined by the flux quantum give evidence for the coherent charge transport by paired electrons. Moreover, the measured resistance minima correspond to two fundamental matching configurations of fluxons in the dc-JJA, caused by magnetic frustration. The robust properties of the prepared dc-JJA demonstrate the opportunities for a fast preparation of complex device configurations using direct-write approaches.

Highly-Packed Proximity-Coupled DC-Josephson Junction Arrays by a Direct-Write Approach / Porrati, F.; Jungwirth, F.; Barth, S.; Gazzadi, G. C.; Frabboni, S.; Dobrovolskiy, O. V.; Huth, M.. - In: ADVANCED FUNCTIONAL MATERIALS. - ISSN 1616-301X. - 32:36(2022), pp. N/A-N/A. [10.1002/adfm.202203889]

Highly-Packed Proximity-Coupled DC-Josephson Junction Arrays by a Direct-Write Approach

Frabboni S.;
2022

Abstract

Focused ion beam induced deposition (FIBID) is a direct-write technique enabling the growth of individual nanostructures of any shape and dimension with high lateral resolution. Moreover, the fast and reliable writing of periodically arranged nanostructures can be used to fabricate devices for the investigation of collective phenomena and to design novel functional metamaterials. Here, FIBID is employed to prepare dc-Josephson junction arrays (dc-JJA) consisting of superconducting NbC dots coupled through the proximity effect via a granular metal layer. The fabrication is straightforward and allows the preparation of dc-JJA within a few seconds. Microstructure and composition of the arrays are investigated by transmission electron microscopy and energy dispersive X-ray spectroscopy. The superconductor-to-metal transition of the prepared dc-JJA is studied in a direct way, by tuning the Josephson junction resistance in 70 nm-spaced superconducting NbC dots. The observed magnetoresistance oscillations with a period determined by the flux quantum give evidence for the coherent charge transport by paired electrons. Moreover, the measured resistance minima correspond to two fundamental matching configurations of fluxons in the dc-JJA, caused by magnetic frustration. The robust properties of the prepared dc-JJA demonstrate the opportunities for a fast preparation of complex device configurations using direct-write approaches.
2022
32
36
N/A
N/A
Highly-Packed Proximity-Coupled DC-Josephson Junction Arrays by a Direct-Write Approach / Porrati, F.; Jungwirth, F.; Barth, S.; Gazzadi, G. C.; Frabboni, S.; Dobrovolskiy, O. V.; Huth, M.. - In: ADVANCED FUNCTIONAL MATERIALS. - ISSN 1616-301X. - 32:36(2022), pp. N/A-N/A. [10.1002/adfm.202203889]
Porrati, F.; Jungwirth, F.; Barth, S.; Gazzadi, G. C.; Frabboni, S.; Dobrovolskiy, O. V.; Huth, M.
File in questo prodotto:
File Dimensione Formato  
Adv Funct Materials - 2022 - Porrati - Highly‐Packed Proximity‐Coupled DC‐Josephson Junction Arrays by a Direct‐Write.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 3.13 MB
Formato Adobe PDF
3.13 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1288260
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact