The staple of human intelligence is the capability of acquiring knowledge in a continuous fashion. In stark contrast, Deep Networks forget catastrophically and, for this reason, the sub-field of Class-Incremental Continual Learning fosters methods that learn a sequence of tasks incrementally, blending sequentially-gained knowledge into a comprehensive prediction. This work aims at assessing and overcoming the pitfalls of our previous proposal Dark Experience Replay (DER), a simple and effective approach that combines rehearsal and Knowledge Distillation. Inspired by the way our minds constantly rewrite past recollections and set expectations for the future, we endow our model with the abilities to i) revise its replay memory to welcome novel information regarding past data ii) pave the way for learning yet unseen classes. We show that the application of these strategies leads to remarkable improvements; indeed, the resulting method – termed eXtended-DER (X-DER) – outperforms the state of the art on both standard benchmarks (such as CIFAR-100 and miniImageNet) and a novel one here introduced. To gain a better understanding, we further provide extensive ablation studies that corroborate and extend the findings of our previous research (e.g. the value of Knowledge Distillation and flatter minima in continual learning setups). We make our results fully reproducible; the codebase is available at https://github.com/aimagelab/mammoth.
Class-Incremental Continual Learning into the eXtended DER-verse / Boschini, Matteo; Bonicelli, Lorenzo; Buzzega, Pietro; Porrello, Angelo; Calderara, Simone. - In: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. - ISSN 0162-8828. - 45:5(2023), pp. 5497-5512. [10.1109/TPAMI.2022.3206549]
Class-Incremental Continual Learning into the eXtended DER-verse
Boschini, Matteo;Bonicelli, Lorenzo;Buzzega, Pietro;Porrello, Angelo;Calderara, Simone
2023
Abstract
The staple of human intelligence is the capability of acquiring knowledge in a continuous fashion. In stark contrast, Deep Networks forget catastrophically and, for this reason, the sub-field of Class-Incremental Continual Learning fosters methods that learn a sequence of tasks incrementally, blending sequentially-gained knowledge into a comprehensive prediction. This work aims at assessing and overcoming the pitfalls of our previous proposal Dark Experience Replay (DER), a simple and effective approach that combines rehearsal and Knowledge Distillation. Inspired by the way our minds constantly rewrite past recollections and set expectations for the future, we endow our model with the abilities to i) revise its replay memory to welcome novel information regarding past data ii) pave the way for learning yet unseen classes. We show that the application of these strategies leads to remarkable improvements; indeed, the resulting method – termed eXtended-DER (X-DER) – outperforms the state of the art on both standard benchmarks (such as CIFAR-100 and miniImageNet) and a novel one here introduced. To gain a better understanding, we further provide extensive ablation studies that corroborate and extend the findings of our previous research (e.g. the value of Knowledge Distillation and flatter minima in continual learning setups). We make our results fully reproducible; the codebase is available at https://github.com/aimagelab/mammoth.File | Dimensione | Formato | |
---|---|---|---|
09891836.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
6.75 MB
Formato
Adobe PDF
|
6.75 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris