Ammonia/hydrogen mixtures are among the most promising solutions to decarbonize the transportation and energy sector. The implementation of these alternative energy carriers in practical systems requires developing suitable numerical tools, able to estimate their burning velocities as a function of both thermodynamic conditions and mixture quality. In this study, laminar flame speed correlations for ammonia/hydrogen/air mixtures are provided for high pressures (40 bar–130 bar) and elevated temperatures (720 K–1200 K), and equivalence ratios ranging from 0.4 to 1.5. Based on an extensive dataset of chemical kinetics simulations for ammonia/hydrogen blends (0-20-40-60-80-90-100 mol% of hydrogen), dedicated correlations are derived using a regression fitting. Besides these blend-specific correlations, a generalized (i.e., hydrogen-content adaptive) formulation, with hydrogen content used as additional parameter, is proposed and compared to the dedicated correlations.
Laminar flame speed correlations of ammonia/hydrogen mixtures at high pressure and temperature for combustion modeling applications / Pessina, V.; Berni, F.; Fontanesi, S.; Stagni, A.; Mehl, M.. - In: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. - ISSN 0360-3199. - 47:61(2022), pp. 25780-25794. [10.1016/j.ijhydene.2022.06.007]
Laminar flame speed correlations of ammonia/hydrogen mixtures at high pressure and temperature for combustion modeling applications
Pessina V.;Berni F.;Fontanesi S.;
2022
Abstract
Ammonia/hydrogen mixtures are among the most promising solutions to decarbonize the transportation and energy sector. The implementation of these alternative energy carriers in practical systems requires developing suitable numerical tools, able to estimate their burning velocities as a function of both thermodynamic conditions and mixture quality. In this study, laminar flame speed correlations for ammonia/hydrogen/air mixtures are provided for high pressures (40 bar–130 bar) and elevated temperatures (720 K–1200 K), and equivalence ratios ranging from 0.4 to 1.5. Based on an extensive dataset of chemical kinetics simulations for ammonia/hydrogen blends (0-20-40-60-80-90-100 mol% of hydrogen), dedicated correlations are derived using a regression fitting. Besides these blend-specific correlations, a generalized (i.e., hydrogen-content adaptive) formulation, with hydrogen content used as additional parameter, is proposed and compared to the dedicated correlations.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0360319922025563-main.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
4.3 MB
Formato
Adobe PDF
|
4.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris