Given its remarkable property to easily switch between different oxidative states, iron is essential in countless cellular functions which involve redox reactions. At the same time, uncon- trolled interactions between iron and its surrounding milieu may be damaging to cells and tissues. Heme—the iron-chelated form of protoporphyrin IX—is a macrocyclic tetrapyrrole and a coordina- tion complex for diatomic gases, accurately engineered by evolution to exploit the catalytic, oxygen- binding, and oxidoreductive properties of iron while minimizing its damaging effects on tissues. The majority of the body production of heme is ultimately incorporated into hemoglobin within mature erythrocytes; thus, regulation of heme biosynthesis by iron is central in erythropoiesis. Additionally, heme is a cofactor in several metabolic pathways, which can be modulated by iron- dependent signals as well. Impairment in some steps of the pathway of heme biosynthesis is the main pathogenetic mechanism of two groups of diseases collectively known as porphyrias and congenital sideroblastic anemias. In porphyrias, according to the specific enzyme involved, heme precursors accumulate up to the enzyme stop in disease-specific patterns and organs. Therefore, different por- phyrias manifest themselves under strikingly different clinical pictures. In congenital sideroblastic anemias, instead, an altered utilization of mitochondrial iron by erythroid precursors leads to mito- chondrial iron overload and an accumulation of ring sideroblasts in the bone marrow. In line with the complexity of the processes involved, the role of iron in these conditions is then multifarious. This review aims to summarise the most important lines of evidence concerning the interplay be- tween iron and heme metabolism, as well as the clinical and experimental aspects of the role of iron in inherited conditions of altered heme biosynthesis.
Iron Metabolism in the Disorders of Heme Biosynthesis / Ricci, Andrea; Di Betto, Giada; Bergamini, Elisa; Buzzetti, Elena; Corradini, Elena; Ventura, Paolo. - In: METABOLITES. - ISSN 2218-1989. - 12:9(2022), pp. 819-848. [10.3390/metabo12090819]
Iron Metabolism in the Disorders of Heme Biosynthesis
Andrea RicciWriting – Original Draft Preparation
;Giada Di BettoWriting – Original Draft Preparation
;Elisa BergaminiWriting – Original Draft Preparation
;Elena BuzzettiWriting – Original Draft Preparation
;Elena CorradiniWriting – Review & Editing
;Paolo Ventura
Writing – Original Draft Preparation
2022
Abstract
Given its remarkable property to easily switch between different oxidative states, iron is essential in countless cellular functions which involve redox reactions. At the same time, uncon- trolled interactions between iron and its surrounding milieu may be damaging to cells and tissues. Heme—the iron-chelated form of protoporphyrin IX—is a macrocyclic tetrapyrrole and a coordina- tion complex for diatomic gases, accurately engineered by evolution to exploit the catalytic, oxygen- binding, and oxidoreductive properties of iron while minimizing its damaging effects on tissues. The majority of the body production of heme is ultimately incorporated into hemoglobin within mature erythrocytes; thus, regulation of heme biosynthesis by iron is central in erythropoiesis. Additionally, heme is a cofactor in several metabolic pathways, which can be modulated by iron- dependent signals as well. Impairment in some steps of the pathway of heme biosynthesis is the main pathogenetic mechanism of two groups of diseases collectively known as porphyrias and congenital sideroblastic anemias. In porphyrias, according to the specific enzyme involved, heme precursors accumulate up to the enzyme stop in disease-specific patterns and organs. Therefore, different por- phyrias manifest themselves under strikingly different clinical pictures. In congenital sideroblastic anemias, instead, an altered utilization of mitochondrial iron by erythroid precursors leads to mito- chondrial iron overload and an accumulation of ring sideroblasts in the bone marrow. In line with the complexity of the processes involved, the role of iron in these conditions is then multifarious. This review aims to summarise the most important lines of evidence concerning the interplay be- tween iron and heme metabolism, as well as the clinical and experimental aspects of the role of iron in inherited conditions of altered heme biosynthesis.File | Dimensione | Formato | |
---|---|---|---|
metabolites-12-00819.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
7.51 MB
Formato
Adobe PDF
|
7.51 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris