In this paper we focus on the periodic boundary value problem associated with the Liénard differential equation x ′′ + f ( x ) x ′ + g ( t , x ) = s, where s is a real parameter, f and g are continuous functions and g is T-periodic in the variable t. The classical framework of Fabry, Mawhin and Nkashama, related to the Ambrosetti-Prodi periodic problem, is modified to include conditions without uniformity, in order to achieve the same multiplicity result under local coercivity conditions on g. Analogous results are also obtained for Neumann boundary conditions.
Ambrosetti-Prodi Periodic Problem under Local Coercivity Conditions / Sovrano, E.; Zanolin, F.. - In: ADVANCED NONLINEAR STUDIES. - ISSN 1536-1365. - 18:1(2018), pp. 169-182. [10.1515/ans-2017-6040]
Ambrosetti-Prodi Periodic Problem under Local Coercivity Conditions
Sovrano E.;
2018
Abstract
In this paper we focus on the periodic boundary value problem associated with the Liénard differential equation x ′′ + f ( x ) x ′ + g ( t , x ) = s, where s is a real parameter, f and g are continuous functions and g is T-periodic in the variable t. The classical framework of Fabry, Mawhin and Nkashama, related to the Ambrosetti-Prodi periodic problem, is modified to include conditions without uniformity, in order to achieve the same multiplicity result under local coercivity conditions on g. Analogous results are also obtained for Neumann boundary conditions.File | Dimensione | Formato | |
---|---|---|---|
10.1515_ans-2017-6040.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
654.05 kB
Formato
Adobe PDF
|
654.05 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris