We prove surface and volume mean value formulas for classical solutions to uniformly elliptic equations in divergence form with Hölder continuous coefficients. The kernels appearing in the integrals are supported on the level and superlevel sets of the fundamental solution relative the adjoint differential operator. We then extend the aforementioned formulas to some subelliptic operators on Carnot groups. In this case we rely on the theory of finite perimeter sets on stratified Lie groups.
Mean value formulas for classical solutions to some degenerate elliptic equations in Carnot groups / Pallara, Diego; Polidoro, Sergio. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 17:5&6(2022), pp. 1733-1749. [10.3934/dcdss.2022144]
Mean value formulas for classical solutions to some degenerate elliptic equations in Carnot groups
Pallara, DiegoMembro del Collaboration Group
;Polidoro, Sergio
Membro del Collaboration Group
2022
Abstract
We prove surface and volume mean value formulas for classical solutions to uniformly elliptic equations in divergence form with Hölder continuous coefficients. The kernels appearing in the integrals are supported on the level and superlevel sets of the fundamental solution relative the adjoint differential operator. We then extend the aforementioned formulas to some subelliptic operators on Carnot groups. In this case we rely on the theory of finite perimeter sets on stratified Lie groups.File | Dimensione | Formato | |
---|---|---|---|
PPJ.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
313.28 kB
Formato
Adobe PDF
|
313.28 kB | Adobe PDF | Visualizza/Apri |
10.3934_dcdss.2022144.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
360.02 kB
Formato
Adobe PDF
|
360.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris