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Mean value formulas for classical solutions

to some degenerate elliptic equations in Carnot groups

Diego Pallara * Sergio Polidoro �

Abstract

We prove surface and volume mean value formulas for classical solutions to uniformly
elliptic equations in divergence form with Hölder continuous coefficients. The kernels appea-
ring in the integrals are supported on the level and superlevel sets of the fundamental solution
relative the adjoint differential operator. We then extend the aforementioned formulas to
some subelliptic operators on Carnot groups. In this case we rely on the theory of finite
perimeter sets on stratified Lie groups.

1 Introduction

The mean value property that characterizes harmonic functions is a fundamental tool in potential
theory and provides us with simple proofs of maximum principles, Harnack inequalities, regulari-
ty properties of harmonic functions and compactness results.

It is known that the proof of mean value formulas relies on the divergence theorem and
on the fact that the Euclidean sphere is a level set of the fundamental solution of the Laplace
equation. Based on this idea, this formula has been first extended in 1951 by Pini [22] to the
heat equation in one space variable, then by Watson [27] in 1973 to the heat equation in several
space variables. Mean value formulas for degenerate operators in the form of sum of squares of
Hörmander vector fields have been proved in 1993 by Citti, Garofalo and Lanconelli [7]. Still in
the framework of hypoelliptic operators, we recall the article by Garofalo and Lanconelli [14],
who prove in 1990 mean value formulas for Kolmogorov operators.

The general class of uniformly parabolic operators with smooth coefficents has been consid-
ered by Fabes and Garofalo [8] in 1987, and by Garofalo and Lanconelli in [13] in 1989. More
recently, uniformly parabolic operators with weaker regularity assumptions on the coefficients of
the operator have been considered by the authors and Malagoli [19]. We point out that the main
difficulty encountered in [19] is due to the fact that the fundamental solution of the parabolic
equation is not explicitly known and that, as a consequence, it is impossible to check the reg-
ularity of its level sets, which are the boundaries of the domain where the divergence theorem
needs to be applied. This problem was bypassed in [8, 13] by assuming the smoothness of the
coefficients, which guarentees the applicability of Sard’s theorem, and has been circumvented in
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[19] in two ways: one relies on a refinement of the classical divergence theorem in the classical
vein, the other on the theory of sets with finite perimeter.

The aim of the present paper is to come back to elliptic operators, with natural regularity
assumptions, and to address the problem for their degenerate counterpart on Carnot groups.
By natural regularity we mean that we consider possibily degenerate elliptic operators with
C1+α diffusion and drift coefficients, so that both L and its adjoint L ∗ can be written in
non-divergence form with Hölder continuous coefficients.

As we will see in the following, the mean value formula for uniformly elliptic operators with
natural conditions on the coefficients is rather simple. Indeed, several results on the existence
of a fundamental solution Γ of uniformly elliptic equations with Hölder continuous coefficients
are avaliable in literature. All of them rely on the Levi’s parametrix method. We mainly refer
on the Kalf article [15], where some bounds of the gradient of Γ ensure that, for sufficiently
large C, the level set

{
Γ = C

}
is a C1 manifold. We give the proof of the mean value formulas

for uniformly elliptic operators for the sake of completness, and also because it describes in the
Euclidean setting the procedure that we adopt in the more difficult setting of the Carnot groups.

The generalization of the mean value property to subelliptic operators in a Carnot group G
involves a substantial difficulty. Indeed, the fundamental solution Γ of a subelliptic equation
LGu = 0 is not smooth, as only first and second order horizontal derivatives are defined as
continuous functions. Therefore the level sets of Γ may have wide subsets of singular points and
the same assertion is true for the fundamental solution Γ∗ of the adjoint equation L ∗

Gv = 0. In
this setting we cannot rely on any refinement of the classical divergence theorem as we did in
[19], and we rely on the theory of sets with finite perimeter, which has been developed in the
framework of stratified groups. We refer to the lecture notes [24] by Serra Cassano and the wide
bibliography therein, which can be applied also to families of degenerate parabolic subelliptic
operators, see [21].

We present our results on uniformly elliptic operators in Section 2, where we also recall
the main results we need on the existence and the main properties of a fundamental solution.
We devote Section 3 to recalling the setting of Carnot groups, the relevant notions on sets of
finite perimeter, an existence result on the fundamental solution, and to proving the mean value
formulas for a class of subelliptic operators in Carnot groups.

2 Uniformly elliptic operators

Let Ω be an open subset of RN . We consider classical solutions u to the equation L u = f in Ω,
where L is an elliptic operator in divergence form defined for x ∈ RN as follows

L u(x) :=
N∑

i,j=1

∂
∂xi

(
aij(x) ∂u∂xj (x)

)
+

N∑
i=1

bi(x) ∂u∂xi (x) + c(x)u(x). (2.1)

In the following we use the notation A(x) := (aij(x))i,j=1,...,N , b(x) := (b1(x), . . . , bN (x)) and we
write L u in the short form

L u(x) := div (A(x)∇u(x)) + 〈b(x),∇u(x)〉+ c(x)u(x). (2.2)

The adjoint operator is of course

L ∗u(x) := div (A(x)∇u(x))− 〈b(x),∇u(x)〉+ (c(x)− div b(x))u(x).

2



Here div,∇ and 〈 · , · 〉 denote the divergence, the gradient and the inner product in RN , re-
spectively. We assume that the matrix A(x) is symmetric and that L is uniformly elliptic, i.e.,
there exist two constants λ,Λ, with 0 < λ < Λ, such that

λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2, (2.3)

for every ξ ∈ RN , for every x ∈ RN , and for i, j = 1, . . . , N . We finally assume that the
coefficients aij , bi, c and their derivatives

∂aij
∂xi

, ∂bi∂xi
are bounded Hölder continuous functions of

exponent α ∈]0, 1], for i, j = 1, . . . , N . Under the above assumptions, the classical parametrix
method provides us with the existence of a fundamental solution Γ. Let us quote from the article
of Kalf [15] the results we need for our purposes. We denote by DΩ the diagonal DΩ = {(x, x) ∈
Ω× Ω}.

According to the Definition at page 259 of [15], we say that a function Γ : (Ω×Ω)\DΩ → R
is a fundamental solution to the equation L u = 0 if the following conditions hold for every
y ∈ Ω:

i) Γ(·, y) ∈ C2(Ω\{y}) and L Γ(·, y) = 0;

ii) ∫
Ω
|Γ(x, y)| dx < +∞;

iii) For every ϕ ∈ C∞c (Ω) we have

ϕ(y) = −
∫

Ω
Γ(x, y)L ∗ϕ(x) dx.

In the following we use property iii) with ϕ ∈ C2
c (Ω), by a density argument.

Under our hypotheses, Theorem 5 of [15] ensures that for every connected open set Ω1 such
that Ω1 ⊂ Ω there exists a fundamental solution Γ : (Ω1 × Ω1)\DΩ → R of L u = 0. Our
assumptions on the coefficients of L ensures that there exists as well a fundamental solution
Γ∗ : (Ω1 × Ω1)\DΩ → R of L ∗u = 0.

The parametrix method used in [15] also provides us with the following estimates: there
exist positive constants c−, c+, c0, c1, only depending on the dimension N , on the operator L
and on the set Ω1, such that the following bounds hold for every x, y ∈ Ω1:

c− log
( √

λ
|x−y|

)
− c0|x− y|α/2 ≤ Γ(x, y) ≤ c+ log

( √
Λ

|x−y|

)
+ c0|x− y|α/2 (2.4)

in the case N = 2, while for N > 2 we have

c−

|x− y|N−2
− c0

|x− y|N−2−α ≤ Γ(x, y) ≤ c+

|x− y|N−2
+

c0

|x− y|N−2−α . (2.5)

Moreover,

c−

|x− y|N−1
− c0

|x− y|N−1−α ≤ |∇xΓ(x, y)| ≤ c+

|x− y|N−1
+

c0

|x− y|N−1−α (2.6)
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for every x, y ∈ Ω1. The above inequalities also hold for Γ∗. We refer to Theorem 3 and to the
formulas (2.5), (2.6) and (2.8) of [15].

We introduce some notation and we state our main results. For every x0 ∈ RN and for every
r > 0, we set

ψr(x0) :=
{
x ∈ RN | Γ∗(x, x0) = 1

rN−2

}
,

Ωr(x0) :=
{
x ∈ RN | Γ∗(x, x0) > 1

rN−2

}
.

(2.7)

Note that, as observed in Remark 7 of [15], the bounds (2.4) and (2.5) imply Γ(x, y) > 0 and
Γ∗(x, y) > 0 whenever x is sufficiently close to y. Moreover, Ωr(x0) is bounded and ψr(x0) is a
C1 manifold, for sufficiently small positive r.

We finally introduce the following kernels

K(x0, x) :=
〈A(x)∇xΓ∗(x, x0),∇xΓ∗(x, x0)〉

|∇xΓ∗(x, x0)|
,

M(x0, x) :=
N

(N − 2)
· 〈A(x)∇xΓ∗(x, x0),∇xΓ∗(x, x0)〉

Γ∗(x, x0)
2(N−1)
N−2

.
(2.8)

Note that ∇xΓ∗(x0, x) 6= 0 in Ωr(x0) for sufficiently small r and Γ∗(x, x0) 6= 0 in ψr(x0), by its
very definition. In the following, HN−1

e denotes the (N − 1)-dimensional Hausdorff measure, see
e.g. [20]. The first achievements of this note are the following mean value formulas.

Theorem 2.1 Let Ω be an open subset of RN , with N > 2, f ∈ C(Ω) and let u be a classical
solution to L u = f in Ω. Then, for every x0 ∈ Ω there is r0 > 0 such that for every 0 < r < r0

we have

u(x0) =

∫
ψr(x0)

K(x0, x)u(x) dHN−1(x)+

∫
Ωr(x0)

f(x)
(

1
rN−2 − Γ∗(x, x0)

)
dx

+
1

rN−2

∫
Ωr(x0)

(div b(x)− c(x))u(x) dx,

(2.9)

u(x0) =
1

rN

∫
Ωr(x0)

M(x0, x)u(x) dx+
N

rN

∫ r

0

(
%N−1

∫
Ω%(x0)

f(x)
(

1
%N−2 − Γ∗(x, x0)

)
dx

)
d%

+
N

rN

∫ r

0

(
%

∫
Ω%(x0)

(div b(x)− c(x))u(x) dx

)
d%. (2.10)

Remark 2.2 The usual proof of the mean value formula relies on the application of the second
Green identity on the set Ωr(x0)\Ωε(x0), with 0 < ε < r ≤ r0, which produces the first integral in
the right hand side of (2.9) and

∫
ψε(x0)K(x0, x)u(x) dHN−1(x). The conclusion then follows from

the fact that
∫
ψε(x0)K(x0, x)u(x) dHN−1(x) → u(x0) as ε → 0. We adopt here an alternative

approach which relies on the properties of the fundamental solution. This approach simplifies
the proof of the mean value formula in the setting of degenerate subelliptic operators on Carnot
groups.
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Proof. Let r1 > 0 be such that Ωr1(x0) ⊂ Ω and consider an open set Ω1 such that Ωr1(x0) ⊂ Ω1

and that Ω1 ⊂ Ω. Then there exists the fundamental solution Γ∗ of the equation L ∗v = 0 in Ω1.
As noticed above, we can, and we do, choose r0 ∈]0, r1] such that |∇xΓ∗(·, x0)| 6= 0 in Ωr0(x0),
hence ψr(x0) is a C1-manifold for every positive r < r0. We choose r ≤ r0 and we introduce a
further positive parameter ε small enough to have Bε(x0) := {|x − x0| < ε} ⊂ Ωr(x0). We let
ϕε ∈ C∞(RN ) be a function such that supp(ϕε) ⊂ Bε(x0) and ϕε(x) = 1 for |x − x0| ≤ ε/2.
Since ϕεu ∈ C2

c (Ω1), the very definition of Γ∗ yields

ϕε(y)u(y) = −
∫

Ω
Γ∗(x, y)L (ϕεu)(x) dx

for every y ∈ Ω1. In particular,

u(x0) = −
∫

Ω
Γ∗(x, x0)L (ϕεu)(x) dx. (2.11)

We next consider the functions w(x) := (1 − ϕε(x))u(x) and v(x) := Γ∗(x, x0) − 1
rN−2 and we

note that

w(x)L ∗v(x)− v(x)Lw(x) =div
(
w(x)A(x)∇v(x)− v(x)A(x)∇w(x)

)
− div

(
w(x)v(x)b(x)

) (2.12)

for every x ∈ Ω\
{
x0

}
. Recalling that L ∗v = 1

rN−2 (div b− c) in Ω\
{
x0

}
, equation (2.12) can be

written as follows

1

rN−2
(div b(x)− c(x))w(x)− v(x)Lw(x) = div Φ(x), Φ(x) :=

(
wA∇v − vA∇w − wvb

)
(x).

By our choice of ϕε we have that Φ vanishes in Bε/2(x0), then it can be extended to a C1(Ω)
function by setting Φ(x0) = 0. By the divergence theorem we find∫

Ωr(x0)

(
1

rN−2 (div b(x)− c(x))w(x)− v(x)Lw(x)
)
dx = −

∫
ψr(x0)

〈ν,Φ〉dHN−1
e , (2.13)

where ν(x) = ∇xΓ∗(x,x0)
|∇xΓ∗(x,x0)| . In order to conclude our proof, we rewrite (2.11) in its equivalent

form

u(x0) = −
∫

Ωr(x0)

(
1

rN−2 + v(x)
)
L (ϕεu)(x)dx. (2.14)

We then recall that u = w + ϕεu, so that f = L u = Lw + L (ϕεu). Than, by subtracting
(2.14) and (2.13), we find

u(x0) =−
∫

Ωr(x0)
v(x)f(x) dx+

∫
Ωr(x0)

(
1

rN−2 (div b(x)− c(x))
)

(1− ϕε(x))u(x) dx

+

∫
ψr(x0)

〈ν,Φ〉dHN−1
e − 1

rN−2

∫
Bε(x0)

L (ϕεu)(x) dx.

(2.15)

Now we let ε→ 0. Then, ϕε(x)→ 0 a.e. and moreover∫
Bε(x0)

L (ϕεu)(x) dx =

∫
Bε(x0)

div (A∇(ϕεu)) dx+

∫
Bε(x0)

〈b,∇(ϕεu)〉 dx+

∫
Bε(x0)

cϕεu dx.
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The first integral vanishes by the divergence theorem, as ϕε = 0 on the boundary, the last one
tends to 0 because the function ϕεu is bounded, whereas for the second one we notice that∫

Bε(x0)
〈b,∇(ϕεu)〉 dx =

∫
∂Bε(x0)

ϕεu〈b, ν〉 dHN−1
e −

∫
Bε(x0)

ϕεudiv b dx

where the surface integral vanishes and the second one tends to 0. Finally, we have

〈ν,Φ〉(x) = K(x0, x)u(x),

since ν(x) = ∇xΓ∗(x,x0)
|∇xΓ∗(x,x0)| . This concludes the proof of the first statement of Theorem 2.1.

The proof of the second assertion of Theorem 2.1 is a direct consequence of the first one and
of the coarea formula. Indeed, fix a positive r as above, multiply (2.9) (with % in place of r) by
N
rN
%N−1 and integrate over ]0, r[. We find

N

rN

∫ r

0
%N−1u(x0)d% =

N

rN

∫ r

0
%N−1

(∫
ψ%(x0)

K(x0, x)u(x) dHN−1
e (x)

)
d%

+
N

rN

∫ r

0
%N−1

(∫
Ω%(x0)

f(x)
(

1
%N−2 − Γ∗(x, x0)

)
dx

)
d%

+
N

rN

∫ r

0
%

(∫
Ω%(x0)

(div b(x)− c(x))u(x) dx

)
d%.

The left hand side of the above equality equals u(x0), while the last two terms agree with the
last two terms appearing in the statement of Theorem 2.1. In order to conclude the proof we
only need to show that

1

N − 2

∫
Ωr(x0)

M(x0, x)u(x) dx =

∫ r

0
%N−1

(∫
{

Γ∗(·,x0)=
1

%N−2

}K(x0, x)u(x) dHN−1
e (x)

)
d%.

(2.16)
With this aim, we substitute y = 1

%N−2 in the left hand side of (2.16) and we recall the definition
of the kernel K. We find∫ r

0
%N−1

(∫
{

Γ∗(·,x0)=
1

%N−2

} 〈A(x)∇xΓ∗(x, x0),∇xΓ∗(x, x0)〉
|∇xΓ∗(x, x0)|

u(x) dHN−1
e (x)

)
d% (2.17)

=
1

N − 2

∫ ∞
1

rN−2

1

y
2(N−1)
N−2

(∫
{Γ∗(·,x0)=y}

〈A(x)∇xΓ∗(x, x0),∇xΓ∗(x, x0)〉
|∇xΓ∗(x, x0)|

u(x) dHN−1
e (x)

)
dy

=
1

N − 2

∫ ∞
1

rN−2

(∫
{Γ∗(·,x0)=y}

〈A(x)∇xΓ∗(x, x0),∇xΓ∗(x, x0)〉

Γ∗(x, x0)
2(N−1)
N−2 |∇Γ∗(x, x0)|

u(x) dHN−1
e (x)

)
dy.

We conclude the proof of (2.16) by applying the coarea formula, see e.g. [20]. �

Remark 2.3 If N = 2 we start of course from (2.4). Let us show how the results and the proofs
have to be adapted. First, the integration domains are

ψr(x0) :=
{
x ∈ R2 | Γ∗(x, x0) = log

(
1
r

)}
,

Ωr(x0) :=
{
x ∈ R2 | Γ∗(x, x0) > log

(
1
r

)}
,

(2.18)
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the kernel K(x0, x) is the same as in the case N ≥ 3, whereas

M(x0, x) := 2
〈A(x)∇xΓ∗(x, x0),∇xΓ∗(x, x0)〉

exp{2Γ∗(x, x0)}
. (2.19)

Arguing as in the case N ≥ 3 we easily get

u(x0) =

∫
ψr(x0)

K(x0, x)u(x) dH1(x)+

∫
Ωr(x0)

f(x)
(
log
(

1
r

)
− Γ∗(x, x0)

)
dx

+ log

(
1

r

)∫
Ωr(x0)

(div b(x)− c(x))u(x) dx d%.

(2.20)

In order to deduce the mean value formula corresponding to (2.10) we write

u(x0) =
2

r2

∫ r

0
%u(x0) d% =

2

r2

∫ r

0
%

∫
ψ%(x0)

K(x0, x)u(x) dH1(x) d%

+
2

r2

∫ r

0
%

∫
Ω%(x0)

f(x)
(
log
(

1
r

)
− Γ∗(x, x0)

)
dx d%

+
2

r2

∫ r

0
% log

(
1

%

)∫
Ω%(x0)

(div b(x)− c(x))u(x) dx d%.

Concerning the first integral, substituting y = log(1/%) we have∫ r

0
%

∫
{Γ∗(·,x0)=log(1/%}

〈A(x)∇xΓ∗(x, x0),∇xΓ∗(x, x0)〉
|∇xΓ∗(x, x0)|

u(x) dH1(x) d%∫ ∞
log(1/r)

e−2y

∫
{Γ∗(·,x0)=y}

〈A(x)∇xΓ∗(x, x0),∇xΓ∗(x, x0)〉
|∇xΓ∗(x, x0)|

u(x) dH1(x) dy∫
Ωr(x0)

〈A(x)∇xΓ∗(x, x0),∇xΓ∗(x, x0)〉
exp{2Γ∗(x, x0)}

u(x) dx,

whence

u(x0) =
1

r2

∫
Ωr(x0)

M(x0, x)u(x) dx

+
2

r2

∫ r

0
%

∫
Ω%(x0)

f(x)
(
log
(

1
r

)
− Γ∗(x, x0)

)
dx d%

+
2

r2

∫ r

0
% log

(
1

%

)∫
Ω%(x0)

(div b(x)− c(x))u(x) dx.

Remark 2.4 In Theorem 2.1 and in Remark 2.3 we have assumed r0 small enough in order to
exploit the regularity of the level sets of Γ∗ and apply the classical divergence theorem. Indeed,
as we see in the next section, the mean value formulas hold true for almost every r such that
Ωr(x0) is a bounded open subset of Ω. This could be proved, in the same vein, relying on the
theory of sets with finite perimeter in RN .
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3 Subelliptic operators in Carnot groups

In this section we state and prove the mean value formula for a class of subellitic operators
in Carnot groups. We need much more preliminar information with respect to the uniformly
elliptic case treated in Section 2, and accordingly we split this section in various subsections.
In the first one we describe the structure of the Carnot groups. In the second one we present
the class of operators we are interested in, we recall the properties of fundamental solutions and
state the main result, Theorem 3.3. In the third one we discuss the properties of sets with finite
perimeter and, finally, in the last one we prove Theorem 3.3.

We consider m smooth vector fields (1 ≤ m ≤ N)

Xj(x) =
N∑
k=1

ϕjk(x)∂xk , j = 1, . . . ,m, (3.1)

with ϕjk ∈ C
∞(RN ). We introduce the Lie algebra generated by X1, . . . , Xm

g = Lie(X1, . . . , Xm) (3.2)

and we assume the following:

[H.1] The vector fields X1, . . . , Xm satisfy the Hörmander’s rank condition

rank g(x) = N for every x ∈ RN . (3.3)

[H.2] there exists a homogeneous Lie group G =
(
RN , ◦, δλ

)
such that

i) X1, . . . , Xm are left translation invariant on G;

ii) X1, . . . , Xm are δλ-homogeneous of degree one.

Moreover, Xj(0) agrees with the j-th element of the canonical basis of RN , for j = 1, . . . ,m.

3.1 Stratified groups

A Lie group G =
(
RN , ◦

)
is said homogeneous if a family of dilations (δλ)λ>0 exists on G and it

is an automorphism of the group:

δλ(x ◦ y) = (δλx) ◦ (δλy) , for all x, y ∈ RN and λ > 0.

The assumptions [H.1] and [H.2] induce a direct sum decomposition of the Lie algebra g

g = V1 ⊕ · · · ⊕ Vν , (3.4)

where V1 = span
{
X1, . . . Xm

}
, Vk+1 = span

{
[X,Y ], | X ∈ V1, Y ∈ Vk

}
, for k = 1, . . . , ν − 1

and
{

[X,Y ], | X ∈ V1, Y ∈ Vν
}

=
{

0
}
. In the sequel we denote by nj the dimension of Vj , for

j = 1, . . . , ν. Note that [H.2] yields m = n1. The dilation δλ on RN will be represented by a
diagonal matrix, which necessarily has the following form

δλ = diag(λIn1 , λ
2In2 , . . . , λ

νInν ), (3.5)
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the integer Q = n1 + · · ·+ nν will be called homogeneous dimension of G and we have

det δλ = λQ. (3.6)

We refer to the monograph [4] for a more detailed treatment of homogeneous Lie groups and for
an exhaustive bibliography on this subject. In particular, from Proposition 1.38 in [4] it follows
that

X∗j = −Xj , j = 1, . . . ,m. (3.7)

Let us introduce the distance that we use in this paper. From [12, Theorem 5.1] we know that
there are constants εj ∈]0, 1], j = 1, . . . , ν, with ε1 = 1, such that the function

x 7→ ‖x‖∞ = max
j=1,...,ν

{εj |xj |1/j}, (3.8)

where xj ∈ Rnj and | · | denotes the usual Euclidean norm, defines a norm and as a consequence
the distance

d∞(x, y) = ‖y−1 ◦ x‖∞. (3.9)

We notice that d∞ is equivalento to the Carnot-Carathéodory distance and that for every com-
pact set K ⊂ RN there exist two positive constants c−K and c+

K , such that

c−K |x− y| ≤ d∞(x, y) ≤ c+
K |x− y|

1
ν , for all x, y ∈ K. (3.10)

The invariance properties

d∞(y ◦ x, y ◦ z) = d∞(x, z), d∞(δλx, δλy) = λd∞(x, y), (3.11)

hold for every x, y, z in RN and for every positive λ, see again [12]. For every ν ∈ V1, denote
by ν⊥ the codimension 1 subspace of V1 orthogonal to ν and introduce the hyperplane N =
ν⊥ ⊕ V2 ⊕ · · · ⊕ Vν in RN and the constant

θ = max
z∈B(0,1)

{HN−1
e (B(z, 1) ∩N)} (3.12)

which is independent of ν because d∞ is vertically symmetric according to Definition 6.1 in [17],
see Remark 6.2 and Theorem 6.3 in [17]. The constant θ is introduced in [18], is called spherical
factor and is denoted ωG,Q−1 there. Let us set diamG(E) = supx,y∈E d∞(x, y) and define the

h-dimensional spherical Hausdorff measure ShG of a Borel set E, 0 ≤ h ≤ Q. First set for r > 0

ShG,r(E) = inf

{ ∞∑
i=0

θ

2h
diamG (Bi)

h : Bi d∞−balls, E ⊂
∞⋃
i=0

Bi, diamG (Bi) ≤ r

}
and then

ShG(E) = lim
r↓0
ShG,r(E) = sup

r≥0
ShG,r(E). (3.13)

The role of the constant θ in the definition of ShG will be discussed in the Remark 3.11 below.
Finally, we recall the notations of Lie derivatives and Hölder spaces. For any x0 ∈ Ω and

j = 1, . . . ,m, let γ be the solution to the Cauchy problem

γ′(s) = Xj(γ(s)), γ(0) = x0.
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Then the Lie derivative Xju(x0) of u at x0 is

Xju(x0) :=
d

ds
u(γ(s))|s=0.

We say that u belongs to C1
G(Ω) if u,Xju for j = 1, . . . ,m are continuous functions on Ω and

that u ∈ C2
G(Ω) if u,Xju,XiXju are continuous in Ω for i, j = 1, . . . ,m. For α ∈]0, 1] we say

that u is α–Hölder continuous, and we write u ∈ CαG(Ω), if there exists a positive constant M
such that

|u(x)− u(y)| ≤Md∞(x, y)α, for every x, y ∈ Ω. (3.14)

Moreover, we say that u belongs to C1+α
G (Ω) (resp. C1+α

G (Ω)) if u, the derivatives X1u, . . . ,Xmu
(resp. and XiXju, i, j = 1, . . . ,m) belong to the space CαG(Ω). The function u belongs to
CαG,loc(Ω) (Ck+α

G,loc(Ω), respectively) if it belongs to CαG(K) (resp. Ck+α
G (K)) for every compact

set K ⊂ Ω.

3.2 Mean value formulas in Carnot groups

Let X1, . . . , Xm be a family of vector fields satisfying the assumptions [H.1] and [H.2]. We
consider the class of operators given as follows

LGu =

m∑
i,j=1

aijXiXju+ 2

m∑
i,j=1

XjaijXiu+

m∑
i,j=1

XiXjaiju

= divG(A∇Gu) + 〈b,∇Gu〉+ cu,

(3.15)

where we have set

bi =
m∑
j=1

Xjaij , c =
m∑

i,j=1

XiXjaij .

Concerning the horizontal gradient ∇G and the divergence divG appearing in the above formulas,
we agree to identify a horizontal section F =

∑m
j=1 FjXj with its canonical coodinates F =

(F1, . . . , Fm). With this agreement, we denote the gradient of f ∈ C1
G(RN ) and the divergence

of F ∈ C1
G(RN ,Rm) by

∇Gf :=
∑
j

(Xjf)Xj and divGF := −
m∑
j=1

X∗j Fj =

m∑
j=1

XjFj . (3.16)

We assume that A = (aij)i,j=1,...,m is a symmetric matrix satisfying the condition (2.3) for
every ξ ∈ Rm and x ∈ RN and that for every i, j = 1, . . . ,m, the coefficients aij belong to
the space C2+α

G (RN ) for some α ∈]0, 1]. The reason for this particular choice of the coefficients
b1, . . . , bm and c is that, because of (3.7), the adjoint operator of LG has the following simple
form

L ∗
G =

m∑
i,j=1

aijXiXj . (3.17)

We point out that we rely on a result by Bonfiglioli, Lanconelli and Uguzzoni [3], who prove
the existence of a fundamental solution Γ∗ for operators L ∗

G in the form (3.17). Less restrictive
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assumptions on b1, . . . , bm and c would be allowed as soon as more general existence results for
Γ∗ will be available.

Let Ω denote any open subset of RN , and let u be a real valued function defined on Ω. We
say that u is a classical solution to the equation LGu = f in Ω if u belongs to C2

G(Ω) and the
equation LGu = f is satisfied at every point of Ω. The analogous meaning is given to L ∗

Gv = g.
Let us collect the relevant results on the fundamental solutions. If Ω denotes any open

subset of RN , we let DΩ = {(x, x) ∈ Ω × Ω} be its diagonal. As we already pointed out in
the Introduction, we assume the existence of a local fundamental solution Γ∗ to the adjoint
equation L ∗

Gv = 0. With this we mean a function Γ∗ = Γ∗(y, x) defined in
(
RN × RN

)
\DRN ,

which satisfies the following conditions:

1. For every x ∈ RN the function Γ∗( · , x) belongs to C2
G(RN\{x}) and is a classical solution

to L ∗
G Γ∗(·, x) = 0 in RN\{x};

2. for every ϕ ∈ C∞c (Ω) the function

w(y) =

∫
RN

Γ∗(y, x)ϕ(x)dx (3.18)

belongs to C2
G,loc(RN ) and is a classical solution to L ∗

Gw = −ϕ in RN .

The existence of a fundamental solution for the operator L ∗
G when the coefficients are con-

stant has been proved by Folland [9] and by Kogoj and Lanconelli in [16] with a different
approach. The existence of a local fundamental solution for operators L ∗

G with Hölder con-
tinuous coefficients has been established by Bonfiglioli, Lanconelli and Uguzzoni in [3] for the
operator L ∗

G in non-divergence form (3.17). Let us give the complete statement of the result in
[3], that has been obtained by the Levi’s parametrix method.

Theorem 3.1 (Theorem 1.5 in [3]) Let X1, . . . Xm be a family of Hörmander vector fields satis-
fying the assumptions [H.1] and [H.2] in RN with N > 2. Consider the differential operator L ∗

G
in (3.17), where A = (aij)i,j=1,...,m is a symmetric matrix satisfying the condition (2.3) for every
ξ ∈ Rm and x ∈ RN and for some constants 0 < λ < Λ. Suppose that for every i, j = 1, . . . ,m,
the coefficients aij belong to the space CαG(RN ) for some α ∈]0, 1]. Then, for every bounded open
set Ω ⊂ RN there exists a fundamental solution Γ∗ of L ∗

G in Ω. Moreover, for every x ∈ Ω
the function Γ∗( · , x) belongs to C2+α

G (Ω\{x}) and, for every compact set K ⊂ Ω there exists a
positive constant C such that

0 ≤ Γ∗(x, y) ≤ C
(
1 + d∞(x, y)2−Q) , (3.19)

for every y ∈ K and x ∈ Ω.

Remark 3.2 Notice that the case N ≤ 2 reduces to the Euclidean one, which is not considered
in this section devoted to degenerate subelliptic operators. In particular, we always have Q >
N ≥ 3. Moreover, in the proof of our main result we use the following property of Γ∗, which
follows from (3.18). If u ∈ C2

G,c(Ω) then

u(y) = −
∫

Ω
Γ∗(x, y)LGu(x) dx. (3.20)
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Indeed, for ϕ ∈ C∞c (Ω) and u ∈ C2
G,c(Ω) we have∫

Ω
ϕ(y)

∫
Ω

Γ∗(x, y)LGu(x)dx dy =

∫
Ω

LGu(x)

∫
Ω

Γ∗(x, y)ϕ(y)dy dx

=

∫
Ω
u(x)L ∗

G

(∫
Ω

Γ∗(x, y)ϕ(y)dy
)
dx = −

∫
Ω
u(x)ϕ(x) dx,

and we conclude by the arbitrariness of ϕ.

We are now in a position to state the main result of this section. We keep the notation
Ωr(x0), ψr(x0) used in Section 2 and define the kernels

KG(x0, x) :=
〈A(x)∇GΓ∗(x, x0),∇GΓ∗(x, x0)〉

|∇Γ∗G(x, x0)|
,

MG(x0, x) :=
Q

(Q− 2)
· 〈A(x)∇GΓ∗(x, x0),∇GΓ∗(x, x0)〉

Γ∗(x, x0)
2(Q−1)
Q−2

,
(3.21)

where ∇G is defined in (3.16). We agree to set KG(x0, x) = 0 whenever ∇GΓ∗(x, x0) = 0.

Theorem 3.3 Let Ω be an open subset of RN , f ∈ C(Ω) and let u be a classical solution to
LGu = f in Ω. Then, for every x0 ∈ Ω and for almost every r > 0 such that Ωr(x0) ⊂ Ω we
have

u(x0) =

∫
ψr(x0)

KG(x0, x)u(x) dSQ−1
G (x) +

∫
Ωr(x0)

f(x)
(

1
rQ−2 − Γ∗(x, x0)

)
dx, (3.22)

u(x0) =
1

rQ

∫
Ωr(x0)

MG(x0, x)u(x) dx

+
Q

rQ

∫ r

0

(
%Q−1

∫
Ω%(x0)

f(x)
(

1
%Q−2 − Γ(x, x0)

)
dx

)
d%.

(3.23)

The second statement holds for every r > 0 such that Ωr(x0) ⊂ Ω.

3.3 Sets of finite perimeter in stratified groups

In this subsection we present the basic results on functions of bounded variation and sets with
finite perimeter that we need to deal with fundamental solutions. If µ is a Borel measure and E
is a Borel set, we use the notation µ E(B) = µ(E ∩ B). In the following B(x, r) denotes the
ball of center x and radius r of the distance d∞ defined in (3.9). The space BV (G) of functions
of bounded variation in G goes back to [6] and we refer to [24] and to [12] for more information.

Definition 3.4 Let Ω ⊂ RN be an open set and u ∈ L1(Ω); we define

‖∇Gu‖ (Ω) = sup

{∫
Ω
u(x)divGg(x)dx : g ∈ C1

c (Ω,Rm) , ‖g‖∞ ≤ 1

}
, (3.24)

where divG is defined in (3.16). We say that u ∈ BVG(Ω) if ‖∇Gu‖(Ω) is finite.
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Remark 3.5 We point out (see [12, Remarks 2.10, 2.19]) that the (usual) notation ‖∇Gu‖ is
somehow misleading, as the total variation depends upon the fixed vector fields Xj , even though
the functional class BVG(Ω) does not.

As in the Euclidean case, if u belongs to BVG(Ω) then its total variation ‖∇Gu‖ is a finite
positive Radon measure and there is a ‖∇Gu‖-measurable function σu : Ω → Rm such that
|σu(x)| = 1 for ‖∇Gu‖-a.e. x ∈ Ω and∫

Ω
u(x)divGg(x)dx =

∫
Ω
〈g, σu〉d‖∇Gu‖ (3.25)

for all g ∈ C1
c (Ω,Rm). We denote by ∇Gu the vector measure −σu‖∇Gu‖, so that Xju is the

measure (−σu)j‖∇Gu‖ and the following integration by parts formula holds true∫
Ω
u(x)Xjg(x)dx = −

∫
Ω
g (x) d (Xju) (x) (3.26)

for all g ∈ C1
c (Ω).

Definition 3.6 (Sets of finite G-perimeter) If χE is the characteristic function of a mea-
surable set E ⊂ RN , we say that E is a set of finite G-perimeter in Ω if ‖∇GχE‖(Ω) is finite,
and we call (generalized inward) G-normal the m-vector

νE (x) = −σχE (x) .

As customary, we write PG(E) instead of ‖∇GχE‖, PG(E,F ) instead of ‖∇GχE‖(F ) for any
Borel set F . Recall that |νE (x)| = 1 for PG(E)-a.e. x ∈ RN , so that (3.25) takes the form∫

E
divGg(x)dx = −

∫
Ω
〈g, νE〉dPG(E), g ∈ C1

c (Ω,Rm). (3.27)

If E has a smooth boundary, we can compare the generalized G-normal with the Euclidean one,
see [6], formula (3.2) and [5, Remark 2.6].

Remark 3.7 If E is a bounded smooth domain in RN and nE is the Euclidean unit inner
normal at ∂E, consider the m-vector v whose j-th component is defined by

vj =
N∑
k=1

ϕjk(x)(nE)k(x), j = 1, . . . ,m,

where the ϕjk are the coefficients of the vector fields Xj defined in (3.1). Then∫
E

divGg(x)dx = −
∫
∂E
〈g, v〉dHN−1

e (x)

(where HN−1
e denotes the (N − 1)-dimensional Euclidean Hausdorff measure), from which we

read that in this case
νE =

v

|v|
, PG(E) = |v|

(
HN−1
e ∂E

)
(3.28)

at noncharacteristic points, which are those points of the boundary where v 6= 0.
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Let us come to some finer properties of BVG functions. In order to put formula (3.27)
in a form closer to the classical one, we introduce the notion of measure-theoretic or essential
boundary, which is a subset of the topological boundary.

Definition 3.8 (Essential boundary) Let E ⊂ G be a measurable set. We say that x ∈ ∂∗GE
if

lim sup
r→0

λN (E ∩B(x, r))

λN (B(x, r))
> 0, lim sup

r→0

λN (B(x, r) \ E)

λN (B(x, r))
> 0

and we call ∂∗GE the measure-theoretic or essential boundary of E.

Observe that two different but equivalent distances on G give the same essential boundary.
Let us see that the divergence theorem (3.27) can be rewritten in a form much closer to

the classical formula, see [1, Theorems 5.3, 5.4], where the problem is settled in general metric
measure spaces, see also [2, Theorem 1.6].

Theorem 3.9 Given a set of finite perimeter E ⊂ G, for PG(E, ·)-a.e. x ∈ G there is r̄(x) > 0
such that

`Gr
Q−1 ≤ PG(E,Bc(x, r)) ≤ LGr

Q−1

for every r < r̄(x), where 0 < `G ≤ LG <∞ are two constants depending only on the group. As
a consequence, PG(E, ·) is concentrated on ∂∗GE, i.e., PG(E,G \ ∂∗GE) = 0. Moreover, there is a
Borel function βE : RN → [`G, LG] such that

PG(E,B) =

∫
B∩∂∗GE

βE(x) dSQ−1
G (x), ∀B ∈ B(G). (3.29)

The above theorem allows us to rewrite formula (3.27) as an integral on the essential boundary
with respect to the (Q− 1)-dimensional spherical Hausdorff measure as follows:∫

E
divGg(x)dx = −

∫
∂∗GE
〈g, νE〉βE(x) dSQ−1

G . (3.30)

Remark 3.10 We collect here some useful results proved by Franchi, Serapioni and Serra Cas-
sano [10, Theorem 2.3.5] on functions belonging to C1

G(Ω), for which much more information is
available.

If Ω is bounded, a function u in C1
G(Ω) also belongs to BVG(Ω) and by (3.26) the equalities∫

Ω
X∗j g(x)u(x)dx =

∫
Ω
g(x)Xju(x)dx, j = 1, . . . ,m,

hold for every g ∈ C1
c (Ω). Recalling (3.7), we find that the measure derivative of u is ∇GuλN ,

where λN is the Lebesgue measure. Moreover, we say that S ⊂ Ω is a G-regular surface if for
any p ∈ S there are an open neighbourhood U of p and f ∈ C1

G(U) such that

S ∩ U = {x ∈ U : f(x) = 0 and ∇Gf(x) 6= 0}.
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Let Ω be an open subset of RN , f ∈ C1
G(Ω), E = {f < 0}, S = {f = 0}, and let p ∈ Ω be such

that f(p) = 0 and ∇Gf(p) 6= 0. Then, as proved in [11, Theorem 2.1], there is a neighborhood
U of p such that S ∩ U has finite perimeter and

νE(x) = − ∇Gf(x)

|∇Gf(x)|
, x ∈ S ∩ U.

In such a situation the equality ∂∗G(E ∩ U) = ∂(E ∩ U) holds, see [11, Theorem 3.3]. Notice
also that the topological dimension of a C1

G-regular surface is N − 1, see [11, Proposition 3.1],
whereas its Hausdorff dimension with respect to the distance d∞ (or any other equivalent metric)
is Q− 1, see [11, Corollary 3.7].

Remark 3.11 If E is a finite perimeter set and ∂∗GE is G-regular, then formulas (3.29) and
(3.30) become simpler. Indeed, in this case for every x ∈ ∂∗GE the normal unit vector ν(x) is
defined and, denoting by ν⊥(x) the codimension 1 subspace of V1 orthogonal to ν(x), we can
introduce the hyperplane N(x) = ν⊥(x)⊕ V2 ⊕ · · · ⊕ Vν in RN . Then, βE is given by

βE(x) = θ−1 max
z∈B(0,1)

{HN−1
e (B(z, 1) ∩N(x))}

and thus βE(x) = 1 for every x ∈ ∂∗E, by Theorem 4.1 in [17] and the definition of the constant
θ in (3.12). This is the reason why we have chosen the distance d∞. These considerations are
important in our proof of Theorem 3.3, where (3.30) is applied to sets with finite perimeter such
that a part of the essential boundary is G-regular. Indeed, Theorem 4.1 in [17] is local, hence
if F ⊂ ∂∗GE is G-regular and relatively open, then βE = 1 in F .

We end this subsection with the coarea formula for BVG functions, and refer to [10, Theorem
2.3.5] for its proof.

Proposition 3.12 (Coarea formula in G) If u ∈ BVG(Ω) then for a.e. τ ∈ R the set
Eτ = {x ∈ Ω : u(x) > τ} has finite G-perimeter and

‖∇Gu‖ (Ω) =

∫ +∞

−∞
‖∇GχEτ ‖(Ω)dτ. (3.31)

Conversely, if u ∈ L1(Ω) and
∫ +∞
−∞ ‖∇GχEτ ‖(ω)dτ < ∞ then u ∈ BVG(Ω) and equality (3.31)

holds. Moreover, if g : Ω→ R is a Borel function, then∫
Ω
g(x)d ‖∇Gu‖ (x) =

∫ ∞
−∞

∫
Ω
g(x)d‖∇GχEτ ‖(x)dτ. (3.32)

3.4 Proof of Theorem 3.3

The proof of Theorem 3.3 is similar to that of Theorem 2.1. We sketch it and underline the
points where different arguments are needed.
Proof of Theorem 3.3. Let Ω be an open subset of RN , and let u be a classical solution to
LGu = f in Ω. Let x0 ∈ Ω and let r0 > 0 be such that Ωr0(x0) ⊂ Ω. Consider an open set Ω1

such that Ωr0(x0) ⊂ Ω1 and that Ω1 ⊂ Ω. Then there exists the fundamental solution Γ∗ of the
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equation L ∗
Gv = 0 in Ω1. According to Remark 3.10, Γ∗ ∈ BVG(Ω1), hence we can apply the

coarea formula (3.32) to the set Er := Ωr(x0) = {Γ∗(·, x0) > r2−Q}, which has finite perimeter
for a.e. 0 < r < r0.

For such a choice of r, we choose a positive parameter ε > 0 small enough to have Bε(x0) :=
{d∞(x, x0) < ε} ⊂ Ωr(x0). We let ϕε ∈ C∞c (RN ) be a function such that supp(ϕ) ⊂ Bε(x0)
and that ϕε(x) = 1 for every x belonging to Bε/2(x0). Clearly, ϕεu ∈ C2

G,c(Ω1), then the very
definition of Γ∗ yields

u(x0) = ϕε(x0)u(x0) = −
∫

Ω
Γ∗(x, x0)LG(ϕεu)(x) dx. (3.33)

We next consider the functions w(x) := (1 − ϕε(x))u(x) and v(x) := Γ∗(x, x0) − r2−Q and we
note that

w(x)L ∗
Gv(x)− v(x)LGw(x) =divG

(
w(x)A(x)∇Gv(x)− v(x)A(x)∇Gw(x)

)
−

divG
(
w(x)v(x)b(x)

)
,

(3.34)

which can be written as follows

−v(x)LGw(x) = divG Φ(x), Φ(x) :=
(
wA∇Gv − vA∇Gw − wvb

)
(x).

By our choice of ϕε we have that Φ vanishes in Bε/2(x0), then it can be extended to a C1
G(Ω)

function by setting Φ(x0) = 0. We then apply (3.30) to Ωr(x0) and we find∫
Ωr(x0)

v(x)LGw(x)dx =

∫
∂∗GΩr(x0)

〈ν,Φ〉βΩr(x0) dS
Q−1
G . (3.35)

Here ν(x) is the generalized unit normal as in Definition 3.6, which coincides with ∇GΓ∗(x,x0)
|∇GΓ∗(x,x0)|

whenever ∇GΓ∗(x, x0) 6= 0 according to Remark 3.10.
Arguing as in the proof of Theorem 2.1, from the equality u = w + ϕεu we deduce

u(x0) = −
∫

Ωr(x0)

(
1

rQ−2 + v(x)
)
LG(ϕεu)(x)dx (3.36)

We then recall that f = LGu = LGw + LG(ϕεu) so that, by adding (3.36) and (3.35), we find

u(x0) = −
∫

Ωr(x0)
v(x)f(x) + 1

rQ−2 LG(ϕεu)(x) dx+

∫
ψr(x)
〈ν,Φ〉βΩr(x0) dS

Q−1
G . (3.37)

Finally, notice that v = 0 on ψr(x0) and then Φ(x) = 0 for every x ∈ ∂∗GΩr(x0) such that
∇GΓ∗(x, x0) = 0, hence we can write∫

∂∗GΩr(x0)
〈ν,Φ〉βΩr(x0) dS

Q−1
G =

∫
ψr(x0)\{∇GΓ∗(·,x0)=0}

〈ν,Φ〉 dSQ−1
G

=

∫
ψr(x0)\{∇GΓ∗(·,x0)=0}

〈 ∇GΓ∗(x, x0)

|∇GΓ∗(x, x0)|
, A∇GΓ∗(x, x0)

〉
u(x) dSQ−1

G

=

∫
ψr(x0)

KG(x0, x)u(x) dSQ−1
G ,

16



where we have taken into account that βΩr(x0) = 1 in the G-regular part of ψr(x0), see Remark
3.11. The last step to conclude the proof of (3.22) consists in letting ε → 0 as in the proof of
Theorem 2.1 to get rid of the integral of r2−QLG(ϕεu) in (3.37).

To deduce (3.23) from (3.22) we argue as in Section 2, replacing N by Q and using the coarea
formula provided by Theorem 3.12 in the last step. �

Remark 3.13 If the coefficents aij are C∞ then the fundamental solution Γ∗ is C∞ as well and
the level sets {Γ∗ > c} are smooth surfaces for almost all c ∈ R. Therefore, we may take into
account Remark 3.7 and write the surface integral in (3.22) by the simpler form∫

ψr(x0)
KG(x0, x)u(x) dHN−1

e (x),

i.e., we may use the (N − 1)-dimensional Euclidean Hausdorff measure.
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