This paper investigates the influence of power semiconductor parasitic components on the ground leakage current in the three-phase Current Source Inverter topology, in the literature called H7 or CSI7. This topology allows reducing converter conduction losses with respect to the classic CSI, but at the same time makes the topology more susceptible to the parasitic capacitances of the semiconductors devices. In the present work, a grid-connected converter for photovoltaic power systems is considered as a case study, to investigate the equivalent circuit for ground leakage current. The same analysis can be extended to applications regarding electric drives, since the HF model of electric machines is characterized by stray capacitance between windings and the stator slots/motor frame. Simulation results proved the correctness of the proposed simplified common-mode circuit and highlighted the need of an additional common-mode inductor filter in case of resonance frequencies of the common-mode circuit close to harmonics of the power converter switching frequency. Experimental results are in agreement with the theoretical analysis.

Effect of semiconductor parasitic capacitances on ground leakage current in three-phase current source inverters / Migliazza, G.; Carfagna, E.; Buticchi, G.; Immovilli, F.; Lorenzani, E.. - In: ENERGIES. - ISSN 1996-1073. - 14:21(2021), pp. 1-15. [10.3390/en14217364]

Effect of semiconductor parasitic capacitances on ground leakage current in three-phase current source inverters

Migliazza G.;Carfagna E.;Immovilli F.;Lorenzani E.
2021

Abstract

This paper investigates the influence of power semiconductor parasitic components on the ground leakage current in the three-phase Current Source Inverter topology, in the literature called H7 or CSI7. This topology allows reducing converter conduction losses with respect to the classic CSI, but at the same time makes the topology more susceptible to the parasitic capacitances of the semiconductors devices. In the present work, a grid-connected converter for photovoltaic power systems is considered as a case study, to investigate the equivalent circuit for ground leakage current. The same analysis can be extended to applications regarding electric drives, since the HF model of electric machines is characterized by stray capacitance between windings and the stator slots/motor frame. Simulation results proved the correctness of the proposed simplified common-mode circuit and highlighted the need of an additional common-mode inductor filter in case of resonance frequencies of the common-mode circuit close to harmonics of the power converter switching frequency. Experimental results are in agreement with the theoretical analysis.
2021
14
21
1
15
Effect of semiconductor parasitic capacitances on ground leakage current in three-phase current source inverters / Migliazza, G.; Carfagna, E.; Buticchi, G.; Immovilli, F.; Lorenzani, E.. - In: ENERGIES. - ISSN 1996-1073. - 14:21(2021), pp. 1-15. [10.3390/en14217364]
Migliazza, G.; Carfagna, E.; Buticchi, G.; Immovilli, F.; Lorenzani, E.
File in questo prodotto:
File Dimensione Formato  
energies-14-07364.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 4.74 MB
Formato Adobe PDF
4.74 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1280775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact