Climate and environment are undergoing significant changes to extreme conditions due to the heat not reflected beyond the Earth’s atmosphere, with environmental consequences now obvious to everyone. European Union policies include energy and environmental plans to contain these anomalies as soon as possible. Diesel internal combustion engines have excellent general efficiency and reliability, but if they are powered in a traditional way with diesel oil they emit pollutants and greenhouse gases. It’s possible to replace this fossil fuel with biodiesel, or partially by burning it in dual-fuel mode with gaseous mixtures to significantly reduce pollutant emissions. The aim is to continue to exploit the robustness and flexibility achieved with compression ignition engines in various sectors of heavy transport or maritime sector, rather than for combined energy generation. In this thesis combustion DF (dual fuel) and RCCI (Reactivity Controlled Compression Ignition) have been investigated in which a part of diesel oil, fuel of fossil origin and high reactivity, is replaced by a fuel with low reactivity from origin not necessarily fossil (for example: biogas, hydrogen ), indirectly injected into the intake manifold and forming a homogeneous and lean premixed charge; a small amount of high reactivity fuel is injected directly into cylinder ignite the charge. The analyses were carried out using 3D CFD simulations of the combustion process which were validated preliminarily on the basis of experimental data obtained from a modified Diesel engine operating In dual fuel mode. The experimental campaign has been carried out at the test bed of Unimore Departement. Various low reactivity fuels including gasoline, natural gas, biogas and mixtures of natural gas and hydrogen have been investigated. Natural gas and biogas ensure lower operating costs and can leads to reduce exhaust emissions. Furthermore, biogas is a renewable source of energy and can be produced locally, aspects that are of fundamental importance in this historical moment. Both experimental tests and simulations have shown the possibility of replacing high quantities of diesel oil (over 80%) with natural gas or biogas, maintaining or increasing the engine efficiency. Only at low load conditions, the high fuel air ratio of the premixed charge makes dual fuel combustion critical. The possibility of mixing hydrogen with natural gas (up to 50% by volume) was then investigated in order to improve the quality of combustion. This has allowed to improve combustion at low loads, extending the operating zone in dual fuel mode and reducing emissions at medium/high loads. On biogas, moreover, a specific deepening has been done for a cogenerative application. The biogas of plant origin, and self-produced on site by anaerobic fermentation, has been simulated in dual fuel combustion in different parts of carbon dioxide, up to a 50%, fractions corresponding to real compositions of this gas. For this variability, the same performances are not always guaranteed and appropriate injection timing tunings are required. The real case of meeting the energy needs of an agricultural holding has been studied, by means of self-handling of combined electric and thermal energy from diesel cycle endothermic engine in dual fuel mode. For this application were considered performance aspects, exhaust emissions, as well as economic aspects of feasibility and return of the investment.
Il clima e l’ambiente stanno subendo notevoli cambiamenti verso condizioni estreme a causa del calore non riflesso oltre l’atmosfera terrestre, con conseguenze ambientali oramai evidenti a tutti. Le politica dell’Unione Europea include tra gli obiettivi del futuro piani energetici ed ambientali per contenere queste anomalie nel più breve tempo possibile. I motori a combustione interna a ciclo Diesel hanno ottima efficienza generale ed affidabilità, ma se alimentati in modo tradizionale con il gasolio emettono inquinanti e gas ad effetto serra. E’ possibile sostituire questo combustibile di origine fossile con biodiesel, o parzialmente mediante la combustione in modalità dual-fuel con miscele gassose per una decisa riduzione dell’impatto sull’atmosfera. L’obiettivo è continuare a sfruttare la robustezza e la flessibilità raggiunta con i motori ad accensione per compressione in vari settori del trasporto pesante o marittimo, piuttosto che per la generazione combinata di energia. In questa tesi è stata studiata la combustione DF ed RCCI (Reactivity Controlled Compression Ignition) nella quale una parte di gasolio, combustibile di origine fossile e ad alta reattività, viene sostituito da un combustibile a bassa reattività da origine non necessariamente fossile, iniettato in maniera indiretta nel collettore di aspirazione e che forma una carica premiscelata omogenea e magra; una piccola quantità di combustibile ad alta reattività è iniettata direttamente nel cilindro per l’accensione del combustibile. Le analisi sono state svolte mediante simulazioni CFD 3D del processo di combustione che sono state preliminarmente validate sulla base di dati sperimentali ricavati da un motore Diesel modificato per funzionare in modalità Dual Fuel, testato presso la sala prova motori del Dipartimento. Sono stati studiati diversi combustibili a bassa reattività tra cui benzina, gas naturale, biogas e miscele di gas naturale e idrogeno. Il gas naturale ed il biogas permettono costi di gestione inferiori ed opportunità sul contenimento delle emissioni allo scarico. Inoltre, il biogas è una fonte di energia rinnovabile e può essere prodotto localmente, aspetti che nell’attuale momento storico hanno una importanza fondamentale. Sia le prove sperimentali che le simulazioni hanno evidenziato la possibilità di sostituire elevate quantità di gasolio (oltre l’80%) con gas naturale o biogas, mantenendo o aumentando l’efficienza del motore. Solamente ai bassi carichi, l’elevato rapporto aria combustibile della carica premiscelata rende critica la combustione Dual Fuel. E’ stata quindi investigata la possibilità di miscelare idrogeno al gas naturale (fino al 50% in volume) al fine di migliorare la qualità della combustione. Questo ha permesso di migliorare la combustione ai bassi carichi, estendendone la zona di funzionamento in modalità Dual Fuel e di riducendo le emissioni ai carichi medio/alti. Sul biogas è stato fatto, inoltre, un approfondimento specifico per un’applicazione cogenerativa. Il biogas di origine vegetale, ed autoprodotto in loco mediante fermentazione anaerobica, è stato simulato in combustione DF in diverse quote parti di anidride carbonica, fino ad un 50%, ossia frazioni corrispondenti a reali composizioni di questo gas. Per questa variabilità non sono garantite sempre le medesime prestazioni ed occorrono opportune calibrazioni di anticipo di iniezione. E’ stato studiando il caso reale di soddisfacimento del fabbisogno energetico di un’azienda agricola, mediante autoproduzione di energia combinata elettrica e termica da motore endotermico a ciclo diesel in modalità DF. Per questa applicazione sono stati considerati aspetti prestazionali, di emissioni allo scarico, oltre che aspetti economici di fattibilità e rientro dell’investimento.
SISTEMI DI PROPULSIONE E DI GENERAZIONE DELL'ENERGIA AD ELEVATA EFFICIENZA E RISPETTOSI DELL'AMBIENTE / Francesco Legrottaglie , 2022 May 16. 34. ciclo, Anno Accademico 2020/2021.
SISTEMI DI PROPULSIONE E DI GENERAZIONE DELL'ENERGIA AD ELEVATA EFFICIENZA E RISPETTOSI DELL'AMBIENTE
LEGROTTAGLIE, FRANCESCO
2022
Abstract
Climate and environment are undergoing significant changes to extreme conditions due to the heat not reflected beyond the Earth’s atmosphere, with environmental consequences now obvious to everyone. European Union policies include energy and environmental plans to contain these anomalies as soon as possible. Diesel internal combustion engines have excellent general efficiency and reliability, but if they are powered in a traditional way with diesel oil they emit pollutants and greenhouse gases. It’s possible to replace this fossil fuel with biodiesel, or partially by burning it in dual-fuel mode with gaseous mixtures to significantly reduce pollutant emissions. The aim is to continue to exploit the robustness and flexibility achieved with compression ignition engines in various sectors of heavy transport or maritime sector, rather than for combined energy generation. In this thesis combustion DF (dual fuel) and RCCI (Reactivity Controlled Compression Ignition) have been investigated in which a part of diesel oil, fuel of fossil origin and high reactivity, is replaced by a fuel with low reactivity from origin not necessarily fossil (for example: biogas, hydrogen ), indirectly injected into the intake manifold and forming a homogeneous and lean premixed charge; a small amount of high reactivity fuel is injected directly into cylinder ignite the charge. The analyses were carried out using 3D CFD simulations of the combustion process which were validated preliminarily on the basis of experimental data obtained from a modified Diesel engine operating In dual fuel mode. The experimental campaign has been carried out at the test bed of Unimore Departement. Various low reactivity fuels including gasoline, natural gas, biogas and mixtures of natural gas and hydrogen have been investigated. Natural gas and biogas ensure lower operating costs and can leads to reduce exhaust emissions. Furthermore, biogas is a renewable source of energy and can be produced locally, aspects that are of fundamental importance in this historical moment. Both experimental tests and simulations have shown the possibility of replacing high quantities of diesel oil (over 80%) with natural gas or biogas, maintaining or increasing the engine efficiency. Only at low load conditions, the high fuel air ratio of the premixed charge makes dual fuel combustion critical. The possibility of mixing hydrogen with natural gas (up to 50% by volume) was then investigated in order to improve the quality of combustion. This has allowed to improve combustion at low loads, extending the operating zone in dual fuel mode and reducing emissions at medium/high loads. On biogas, moreover, a specific deepening has been done for a cogenerative application. The biogas of plant origin, and self-produced on site by anaerobic fermentation, has been simulated in dual fuel combustion in different parts of carbon dioxide, up to a 50%, fractions corresponding to real compositions of this gas. For this variability, the same performances are not always guaranteed and appropriate injection timing tunings are required. The real case of meeting the energy needs of an agricultural holding has been studied, by means of self-handling of combined electric and thermal energy from diesel cycle endothermic engine in dual fuel mode. For this application were considered performance aspects, exhaust emissions, as well as economic aspects of feasibility and return of the investment.File | Dimensione | Formato | |
---|---|---|---|
TESI DEFINITIVA FRANCESCO LEGROTTAGLIE.pdf
Open access
Descrizione: "High-efficiency and environmentally friendly propulsion and power generation systems", Francesco Legrottaglie
Tipologia:
Tesi di dottorato
Dimensione
11.21 MB
Formato
Adobe PDF
|
11.21 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris