Biological growth on building surfaces can be responsible of degradation of their aesthetical and functional properties. Phototrophic organisms as algae and cyanobacteria have been identified as the first ones to colonize surfaces and allow the formation of following biocenosis, where also heterotrophic bacteria and fungi are involved. Biological colonization depends mainly on climate and microclimate conditions over and all around surfaces, mainly moisture and light availability. This phenomenon is particularly damaging for solar reflective materials (cool building materials), which are characterized by the ability to reflect solar radiation in the whole wavelength spectrum and remain cooler under the sun. Cool materials represent one of the most efficient countermeasures to the urban heat island effect, which causes temperatures in urban areas to be significantly higher than in the surrounding rural areas. Several standards are nowadays available to investigate natural ageing of cool materials (ASTM G7) and accelerated ageing (ASTM D7897). Unfortunately, these standards are mostly focused onto surface soiling and they do not take into proper account the presence and growth of microorganisms. This research work was firstly aimed to develop a laboratory procedure able to reproduce biological colonization on new materials in a repeatable way, in order to quantify the loss of energy performance due to the biological growth. Another goal was to reduce the bio ageing test duration, which normally requires many years through natural exposition. The novel method was built step by step studying separately the influence of different experimental parameters on biological growth then on repeatability of the test. Several setups and environmental conditions have been tested, compared and finally evaluated according to repeatability of results. The experimental device used to expose material samples to bioageing was a bioreactor -a Temporary Immersion System (TIS); three different types of high-efficiency building materials samples, precisely white asphalt shingle (AS), single ply white membrane (WM) and white paint (WP) were tested. Materials samples have been characterized in terms of physical and chemical properties, before and after bioageing exposure. Furthermore, biological growth has been monitored, measured, and finally correlated to colonization level on surfaces. Algae and cyanobacteria growth as well as bio-colonization dynamics describes a curve which follow Avrami’s law, a model previously used to simulate algal colonization process as temporal evolution. Ancillary aspects to bioageing phenomenon were investigated in this research: scientific literature reports that the deposition of soiling on surfaces seems to provide a nutrient layer for phototrophic organisms, encouraging their growth; however, it has been also observed that the presence of atmospheric pollutants could inhibit both the size and diversity of the microbial community. Hence, algal and cyanobacteria growth on soiled surfaces was here studied and compared to growth on new ones. Moreover, metabolites profile production of some algal species after their exposure to soiling mixture was described, in order to outline the influence and effects of soiling solution as abiotic stress to algal cells metabolism. Definitely, this research offers an experimental protocol to induce accelerate bio ageing process on cool building surfaces, providing data about repeatability and strength of the method; the modularity and the application of the protocol to define bio-resistance of a surface type was finally described by Avrami’s model. The application of the protocol on different types of cool surfaces and reproducibility definition are expected as future perspectives.

La crescita di biofilm sulle superfici esterne degli edifici è la causa del loro deterioramento estetico e funzionale. Gli organismi autotrofi quali alghe e cianobatteri sono i pionieri da cui può svilupparsi nel tempo una più complessa biocenosi comprensiva di batteri eterotrofi, funghi e licheni. La colonizzazione biologica dipende soprattutto dalle condizioni climatiche e microclimatiche che si verificano sulle superfici, quali la disponibilità di luce e acqua. Tale fenomeno, chiamato “bioageing”, è particolarmente impattante per le superfici ad alta efficienza energetica (cool materials) applicate agli edifici, caratterizzate da un’elevata riflettanza solare che limita il surriscaldamento, consentendo risparmi in energia di raffrescamento. I materiali cool rappresentano una delle più efficaci contromisure al fenomeno dell’Isola di Calore Urbano. Ad oggi, sono disponibili alcuni metodi standard per ottenere dati relativi all’invecchiamento naturale delle superfici (ASTM G7) e all’invecchiamento accelerato (ASTM D7897). Purtroppo però, quest’ultimo è focalizzato sullo studio del deterioramento chimico-fisico dei materiali, senza tenere in considerazione gli aspetti legati alla colonizzazione biologica. Questo lavoro di ricerca ha come scopo quello di sviluppare un protocollo di prova ripetibile per accelerare la crescita di organismi su materiali cool, e determinarne il relativo calo in termini di riflettanza solare. La procedura sperimentale si prefigge di comprimere drasticamente i tempi di bioageing delle superfici, fenomeno che normalmente richiede alcuni anni per verificarsi in condizioni naturali. Il metodo è stato costruito studiando separatamente l’influenza dei parametri ambientali sulla ripetibilità del test. Sono state confrontate numerose condizioni sperimentali che sono poi state valutate per il livello di ripetibilità raggiunto. Lo strumento usato come camera di crescita è un bioreattore di tipo TIS (Temporary Immersion System). Tre tipologie di materiali cool sono state coinvolte: cool asphalt shingle (AS), single ply white membrane (WM) e white paint (WP). Ogni campione è stato caratterizzato dal punto di vista chimico e fisico sia prima che successivamente alla procedura di bioageing. La crescita biologica è stata monitorata, misurata e correlata con i livelli di colonizzazione sulle superfici. Si è osservato che sia la crescita che la dinamica di colonizzazione ricalcano l’andamento dalla Legge di Avrami, ovvero un modello già utilizzato per simulare il processo di ricopertura algale nel tempo. Altri aspetti del fenomeno di invecchiamento biologico sono stati studiati: è noto dalla letteratura che la deposizione di particolato e inquinanti sulle superfici (soiling) può rappresentare una fonte di nutrimento per gli organismi autotrofi. E’ stato inoltre osservato che l’esposizione a particolari sostanze inquinanti può inibire la crescita e diminuire la biodiversità delle comunità di organismi colonizzatori. È stato quindi confrontato il livello di invecchiamento biologico tra superfici nuove e precedentemente “soiled”. È stato infine valutata la risposta cellulare di alcune specie algali presenti nei contesti urbani allo stress abiotico rappresentato da una soluzione standard di inquinanti atmosferici. Questa ricerca propone in definitiva un protocollo sperimentale di prova ripetibile per accelerare il processo di invecchiamento biologico delle superfici cool; la modularità e l’applicabilità del protocollo di prova nel definire la resistenza alla crescita biologica di una superficie vengono descritti dal modello di Avrami. Tra le prospettive future della ricerca vi è la validazione del protocollo studiato su altre tipologie di materiali, oltre a quella di verificare la riproducibilità del metodo in altri laboratori.

Sviluppo di un metodo di invecchiamento biologico accelerato delle superfici ad alta efficienza energetica / Giulia Santunione , 2022 May 16. 34. ciclo, Anno Accademico 2020/2021.

Sviluppo di un metodo di invecchiamento biologico accelerato delle superfici ad alta efficienza energetica

SANTUNIONE, GIULIA
2022

Abstract

Biological growth on building surfaces can be responsible of degradation of their aesthetical and functional properties. Phototrophic organisms as algae and cyanobacteria have been identified as the first ones to colonize surfaces and allow the formation of following biocenosis, where also heterotrophic bacteria and fungi are involved. Biological colonization depends mainly on climate and microclimate conditions over and all around surfaces, mainly moisture and light availability. This phenomenon is particularly damaging for solar reflective materials (cool building materials), which are characterized by the ability to reflect solar radiation in the whole wavelength spectrum and remain cooler under the sun. Cool materials represent one of the most efficient countermeasures to the urban heat island effect, which causes temperatures in urban areas to be significantly higher than in the surrounding rural areas. Several standards are nowadays available to investigate natural ageing of cool materials (ASTM G7) and accelerated ageing (ASTM D7897). Unfortunately, these standards are mostly focused onto surface soiling and they do not take into proper account the presence and growth of microorganisms. This research work was firstly aimed to develop a laboratory procedure able to reproduce biological colonization on new materials in a repeatable way, in order to quantify the loss of energy performance due to the biological growth. Another goal was to reduce the bio ageing test duration, which normally requires many years through natural exposition. The novel method was built step by step studying separately the influence of different experimental parameters on biological growth then on repeatability of the test. Several setups and environmental conditions have been tested, compared and finally evaluated according to repeatability of results. The experimental device used to expose material samples to bioageing was a bioreactor -a Temporary Immersion System (TIS); three different types of high-efficiency building materials samples, precisely white asphalt shingle (AS), single ply white membrane (WM) and white paint (WP) were tested. Materials samples have been characterized in terms of physical and chemical properties, before and after bioageing exposure. Furthermore, biological growth has been monitored, measured, and finally correlated to colonization level on surfaces. Algae and cyanobacteria growth as well as bio-colonization dynamics describes a curve which follow Avrami’s law, a model previously used to simulate algal colonization process as temporal evolution. Ancillary aspects to bioageing phenomenon were investigated in this research: scientific literature reports that the deposition of soiling on surfaces seems to provide a nutrient layer for phototrophic organisms, encouraging their growth; however, it has been also observed that the presence of atmospheric pollutants could inhibit both the size and diversity of the microbial community. Hence, algal and cyanobacteria growth on soiled surfaces was here studied and compared to growth on new ones. Moreover, metabolites profile production of some algal species after their exposure to soiling mixture was described, in order to outline the influence and effects of soiling solution as abiotic stress to algal cells metabolism. Definitely, this research offers an experimental protocol to induce accelerate bio ageing process on cool building surfaces, providing data about repeatability and strength of the method; the modularity and the application of the protocol to define bio-resistance of a surface type was finally described by Avrami’s model. The application of the protocol on different types of cool surfaces and reproducibility definition are expected as future perspectives.
A novel method to accelerate biodeterioration process on cool building surfaces: experimental setup development, environmental related-aspects analysis and predictive model validation
16-mag-2022
SGARBI, Elisabetta
MUSCIO, Alberto
File in questo prodotto:
File Dimensione Formato  
PhD Thesis_Giulia Santunione.pdf

Open access

Descrizione: Tesi definitiva_ Santunione Giulia
Tipologia: Tesi di dottorato
Dimensione 6.5 MB
Formato Adobe PDF
6.5 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1277157
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact