We present a multiplicity result of positive solutions for the Neumann problem associated with a second order nonlinear differential equation of the following form u″+a(t)g(u)=0, where the weight function a(t) has indefinite sign. The only assumption we make for the nonlinear term g(u) is that its primitive G(u) presents some oscillations at infinity, expressed by the condition involving lim_G(u)/u2=0
Indefinite weight nonlinear problems with Neumann boundary conditions / Sovrano, E.; Zanolin, F.. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 452:1(2017), pp. 126-147. [10.1016/j.jmaa.2017.02.052]
Indefinite weight nonlinear problems with Neumann boundary conditions
Sovrano E.;
2017
Abstract
We present a multiplicity result of positive solutions for the Neumann problem associated with a second order nonlinear differential equation of the following form u″+a(t)g(u)=0, where the weight function a(t) has indefinite sign. The only assumption we make for the nonlinear term g(u) is that its primitive G(u) presents some oscillations at infinity, expressed by the condition involving lim_G(u)/u2=0File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022247X17302123-main.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
532.79 kB
Formato
Adobe PDF
|
532.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
j.jmaa.2017.02.052.pdf
Open access
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
429.74 kB
Formato
Adobe PDF
|
429.74 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris