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Indefinite weight nonlinear problems
with Neumann boundary conditions�

Elisa Sovranoa, Fabio Zanolina,1
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Abstract

We present a multiplicity result of positive solutions for the Neumann prob-
lem associated with a second order nonlinear differential equation of the form
u′′ + a(t)g(u) = 0, where the weight function a(t) has indefinite sign. The
only assumption we make for the nonlinear term g(u) is that its primitive
G(u) presents some oscillations at infinity, expressed by the condition involving
limG(u)/u2 = 0 < limG(u)/u2. As an application, we obtain multiple radially
symmetric solutions for Neumann problems associated with Δu+a(x)g(u) = 0.

Keywords: Neumann problem, indefinite weight, positive solutions, radial
solutions.
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1. Introduction

We deal with the study of positive solutions for indefinite ordinary differential
equations with Neumann boundary conditions on a compact interval [0, T ].More
in detail the problem analyzed is the following:

(P)

⎧⎪⎨
⎪⎩
u′′ + a(t)g(u) = 0,

u(t) > 0, ∀ t ∈ [0, T ],

u′(0) = u′(T ) = 0.
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Setting R
+ := [0,+∞), we assume that g : R+ → R

+ is a continuous function
satisfying the conditions:

(g∗) g(0) = 0 and g(s) > 0 for all s > 0,

(G∗) G∞ := lim inf
s→+∞

2G(s)

s2
= 0 < G∞ := lim sup

s→+∞
2G(s)

s2
,

where

G(s) :=

∫ s

0

g(ξ)dξ.

The requirements on the nonlinearity as in (G∗) can be traced back to 1930
with a classical paper of Hammerstein [18]. In that work, the Author proved
the existence of solutions to a nonlinear integral equation (nowadays called
“Hammerstein equation”) of the form

ψ(x) =

∫
B

K(x, y)f(y, ψ(y)) dy,

under a linear growth assumption on the function f defined on B × R and a
non-resonance condition, which can be equivalently written as

lim sup
u→±∞

2F (x, u)

u2
< λ1, uniformly for x ∈ B,

where

F (x, u) :=

∫ u

0

f(x, s) ds.

Without entering in all the technical details, we recall that in [18], B is a
one-dimensional or multi-dimensional bounded domain, K(x, y) is a bounded
symmetric and positive definite kernel and λ1 is the first eigenvalue of the asso-
ciated linear problem. The pioneering work of Hammerstein stimulated further
researches about the solvability of nonlinear boundary value problems “below
the first eigenvalue”, by imposing conditions on the primitive of the nonlinearity
(see [10, 16, 17, 21] and the references therein). Applications to the Dirichlet
problem, involving these kind of conditions, guarantee the existence of at least
one solution for

(D)

{
Δu+ g(u) = h(x) in Ω,

u = 0 on ∂Ω,

if h ∈ L∞(Ω) and g : R → R is a continuous function with a suitable polynomial
growth (depending on the Sobolev embeddings) such that

lim sup
s→±∞

2G(s)/s2 < λD
1 (Ω).

As usual, Ω ⊆ R
N is assumed be a bounded domain with a sufficiently smooth

boundary and we denote by λD
1 (Ω) the first eigenvalue of −Δ with the Dirichlet

boundary conditions.
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In the one-dimensional case Ω =]0, T [, an improvement of this result was
obtained in [13, Theorem 1], by replacing the Hammerstein type condition with

lim inf
s→±∞

2G(s)

s2
< (π/T )2 = λD

1 (Ω).

Moreover, in that paper, the study of the one-dimensional Dirichlet boundary
value problem, under the assumptions g(s) → +∞ for s → +∞ and

G∞ <
( π

T

)2

< G∞,

leads to the existence of infinitely many solutions u(t) > 0 for all t ∈ ]0, T [
(see [13, Theorem 3]). Concerning the multiplicity of positive solutions for
Dirichlet problems, further investigations have been performed from different
points of view, considering also in [20, 22, 24] more general (nonlinear) differ-
ential operators.

In [24], for the weighted nonlinear problem on a general bounded domain
Ω ⊆ R

N ,

(Dw)

{
Δu+ a(x)g(u) = 0 in Ω,

u = 0 on ∂Ω,

is guaranteed the existence of a sequence of solutions un ≥ 0 in Ω such that
maxΩ un → +∞, if g : R

+ → R
+ satisfies (g∗) and (G∗) with G∞ = +∞,

provided that the weight function belongs to L∞(Ω) and essinfΩa(x) > 0.
A further extension has been achieved by Obersnel and Omari in [23, Theo-
rem 2.2], by proving the existence of two sequences of solutions (un)n and (vn)n
which are strictly positive on Ω and such that limn→+∞ un(x)/dist(x, ∂Ω) =
limn→+∞ vn(x)/dist(x, ∂Ω) = +∞. The theorem of Obersnel and Omari ap-
plies to a sign-changing weight as well.

The treatment of these kind of problems, with respect to the Neumann
boundary conditions, presents some peculiar features, due to the fact that the
first eigenvalue of the associated linear problem is λN

1 (Ω) = 0. Thus, dealing
with the Neumann problem

(N )

{
Δu+ g(u) = h(x) in Ω,
∂u
∂ν = 0 on ∂Ω,

the Hammerstein non-resonance condition with respect to the first eigenvalue,
expressed by lim sups→±∞ 2G(s)/s2 < 0, implies the existence of two sequences
of real numbers (wn)n and (vn)n such that wn → −∞ and g(wn) → +∞, as
well as, vn → +∞ and g(vn) → −∞. Hence, given any h ∈ L∞(Ω) we can
find a pair (α, β) of constant lower- and upper-solutions with α < 0 < β. This
way, the problem becomes easily affordable via the theory of lower- and upper-
solutions [9]. The interesting and more difficult question arises, whether the
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solvability of the Neumann problem occurs under a Hammerstein type non-
resonance condition with respect to the second eigenvalue λN

2 (Ω), which is
the first one positive. Existence results in this direction were carried out by
Mawhin, Ward and Willem [21, Theorem 2] for a nonlinearity of the form f(x, u)
which satisfies a Hammerstein condition, without the need of uniformity and by
Gossez and Omari [16, 17] for the problem (N ) under non-resonance conditions
with respect to the eigenvalue λN

2 (Ω) involving a combination of hypotheses on
g(s)/s and 2G(s)/s2.

As far as we know, in literature there aren’t works about multiple positive
solutions for the analogous of problem (Dw) with Neumann boundary condi-
tions. More precisely, the study of a nonlinearity g satisfying (g∗) and (G∗) is
still open for problem

(Nw)

{
Δu+ a(x)g(u) = 0 in Ω,
∂u
∂n = 0 on ∂Ω,

with u > 0 in Ω even in the one-dimensional case. On the other hand, several
results of multiplicity can be found for Neumann problems associated with

Δu− k(x)u+ a(x)g(u) = 0,

where k(x) > 0, or even for more general p-Laplacian type equations (see [2]
and the references therein). The structure of this latter equation is however
completely different to the one treated here.

If we look for positive solutions for the problem (Nw) under the assumption
(g∗) and a(·) �≡ 0, then a necessary condition is that a(·) must change its sign
(see [1]). This way, we are interested in problems with a sign-indefinite weight
and a positive nonlinearity with an oscillatory potential, that, for N = 1 and
Ω =]0, T [ , lead to problem (P). For ease of discussion, we will focus our study
to the simplified situation where the weight has a “positive hump” followed by a
“negative hump”. Actually we can consider more general cases, by allowing the
existence of subintervals where the weight function identically vanishes. Namely,
to fix our framework, we assume that there exists σ ∈ ]0, T [ such that

(a∗) a(t) ≥ 0, a �≡ 0 for a.e. t ∈ [0, σ], a(t) ≤ 0, a �≡ 0 for a.e. t ∈ [σ, T ].

Generally speaking, not any sign-indefinite weight is suitable to guarantee the
existence of solutions to (P). For instance, if g is continuously differentiable in
R

+
0 := ]0,+∞[ , with g′(s) > 0 for all s > 0, it is a well-known fact that a positive

solution of the Neumann problem on [0, T ] may exist only if
∫ T

0
a(t) dt < 0.

Moreover, other features connected to the graph of g(·), can require further
conditions on the positive or negative part of a(·). Hence, it is convenient to
consider a weight of the form

aλ,μ(t) := λa+(t)− μa−(t), (1.1)
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for λ and μ given real positive parameters. In this manner, problem (P) reads
as

(Pλ,μ)

⎧⎪⎨
⎪⎩
u′′ + aλ,μ(t)g(u) = 0,

u(t) > 0, ∀ t ∈ [0, T ],

u′(0) = u′(T ) = 0.

Notice that solutions of the differential equation in (Pλ,μ) will be considered in
the Carathéodory sense and, clearly, are classical C2-solutions when the weight
function is continuous. As a corollary of our main result (see Theorem 3.1 in
Section 3), the following theorem holds.

Theorem 1.1. Let g : R
+ → R

+ be a continuous function satisfying (g∗)
and (G∗) with s �→ g(s)/s upper bounded in a right neighborhood of 0. Let
a : [0, T ] → R be a bounded piecewise continuous function satisfying (a∗). Then,
there exists λ∗ ≥ 0 such that, for each λ > λ∗, r > 0 and for every integer
k ≥ 1, there is a constant μ∗ = μ∗(λ, r, k) > 0 such that for each μ > μ∗ the
problem (Pλ,μ) has at least k solutions which are nonincreasing on [0, T ] and
satisfy 0 < u(t) ≤ r, for each t ∈ [σ, T ]. Moreover, if G∞ = +∞, the result holds
with λ∗ = 0.

The method of the proof is based on a careful analysis of the trajectories of
the associated phase-plane system

(Sλ,μ)

{
x′ = y,

y′ = −(λa+(t)− μa−(t))gM (x),

where, given a fixed constant M > 0, we have denoted by gM (x) the truncated
function

gM (x) =

⎧⎪⎨
⎪⎩
0, if x < 0,

g(x), if 0 ≤ x ≤ M,

g(M), if x > M.

(1.2)

Positive solutions of the Neumann problem will be obtained by means of the
shooting-type method applied to system (Sλ,μ), starting from the positive half-
axisX+ := {(x, 0) : x > 0} and hitting againX+ at the time t = T . Notice that,
by construction, the solutions (x(t), y(t)) we find are such that x′(t) = y(t) ≤ 0
on [0, T ]. Hence, u(t) = x(t) is nonincreasing on [0, T ] and therefore is a solution
of (Pλ,μ) provided that u(0) ≤ M.

The plan of the paper is the following. In Section 2 we introduce and prove
some technical lemmas for understanding the behavior of the solutions of the
equations u′′ + λa+(t)g(u) = 0 and u′′ − μa−(t)g(u) = 0, separately. By these
results, in Section 3, we prove a theorem about multiplicity of solutions for
(Pλ,μ). Some variants and consequence will be discussed as well. In Section 4 we
present how our approach extends to the study of positive solutions of problem
(Nw) for radially symmetric domains with a weight function w(x) = a(|x|). In
Section 5 we conclude with few comments about the possibility of extending our
main results to more general equations.
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2. Basic tools and technical estimates

In this section, to describe our approach in a more transparent way, preliminary
results will be done for a locally Lipschitz continuous function g : R+ → R

+

satisfying (g∗). We tacitly extend the function g(·) to the whole real line, by
setting g(s) = 0 for all s < 0 and the extension is still denoted by g(·). Let
a ∈ L1([0, T ]) be a weight function such that conditions in (a∗) are satisfied.

Let (x(· ; t0, x0, y0), y(· ; t0, x0, y0)) be the solution of the system

(S+
λ )

{
x′ = y,

y′ = −λa+(t)g(x),

satisfying the initial condition

x(t0) = x0, y(t0) = y0,

for t0 ∈ [0, σ]. By the concavity of x(t) and the assumption g(s) = 0 for s < 0,
it is straightforward to check that the solution (x(t), y(t)) is globally defined on
[0, σ].

Lemma 2.1. Let r > 0 be fixed. If (x(t), y(t)) is any solution of (S+
λ ) with

x(0) > r and y(0) = 0, then y(t) ≤ 0 for all t ∈ [0, σ]. Furthermore, there exists
t̄ ∈ [0, σ[ such that y(t) = 0 for all 0 ≤ t ≤ t̄ and y(t) < 0 for all t ∈ ]t̄, σ]. If,
moreover, x(0) > (1 + σ)r, then

x(t)2 + y(t)2 > r2, ∀ t ∈ [0, σ].

Proof. To prove the first part of the claim, it is sufficient to observe that

x′(t) = y(t) = −λ

∫ t

0

a+(ξ)g(x(ξ)) dξ ≤ 0, ∀ t ∈ [0, σ].

Furthermore, if x(to) = 0 for some to ∈ ]0, σ], there exists ξo ∈ ]0, to[ such that
x′(ξo) < 0 and therefore, y(t) ≤ y(ξo) < 0 for all t ∈ [ξo, σ]. On the other hand,
if x(t) > 0 for all t ∈ [0, σ], then the same conclusion holds since

∫ σ

0
a+(ξ) dξ > 0.

Thus, our assertion follows by taking t̄ := inf{t ∈ ]0, σ] : y(t) < 0}.
To prove the last part of the claim, suppose, by contradiction, that there

exists t# ∈ ]0, σ] such that x(t#)2 + y(t#)2 ≤ r2. Given B(0, r) := {(x, y) :
x2 + y2 < r2}, since (x(0), y(0)) �∈ clB(0, r), let t̃ ∈]0, σ] be the minimum of
the t such that (x(t), y(t)) ∈ ∂B(0, r). This way, (x(t̃), y(t̃)) ∈ ∂B(0, r) and
(x(t), y(t)) �∈ clB(0, r) for all t ∈ [0, t̃[ . Recalling that g(s) = 0 for s < 0, we
easily deduce that x(t) ≥ 0 for all t ∈ [0, t̃]. The monotonicity of y(t) implies
that |y(t)| ≤ |y(t̃)| ≤ r for all t ∈ [0, t̃]. From x′ = y, we have

x(t) = x(0) +

∫ t

0

y(ξ) dξ > (1 + σ)r −
∫ σ

0

|y(ξ)| dξ

≥ (1 + σ)r − σr = r, ∀ t ∈ [0, t̃].

Hence, for t = t̃, we obtain the contradiction r ≥ x(t̃) > r. The result is thus
proved.

6



The lemma just proved does not require any special condition on a+(·) and
g(·). On the contrary, in the next results qualitative information about the solu-
tions will be provided under some additional hypotheses on the weight function
and the nonlinearity.

Lemma 2.2. Suppose that there exists an interval [t1, t2] ⊆ [0, σ] and a constant
δ > 0 such that a+(t) ≥ δ for a.e. t ∈ [t1, t2]. If

λδG∞ >

(
π

2(t2 − t1)

)2

, (2.1)

then, for any fixed constant ρ with

λδG∞ > λδρ >

(
π

2(t2 − t1)

)2

, (2.2)

there exists an increasing sequence of positive real numbers (dj)j with dj ↗ +∞
for which the following property holds: If (x(t), y(t)) is any solution of (S+

λ )
with x(0) ≥ dj , y(0) = 0 and x(t1) = dj , then there is t̃ ∈ ]t1, t2[ such that

• x(t̃) = 0,

• y(t)2

λδρ
+ x(t)2 ≥ d2j , ∀ t ∈ [t1, t̃ ].

Proof. By fixing in (2.2) a positive constant ρ with ρ < G∞, from [13] by
lim sups→+∞(2G(s)−ρs2) = +∞, there exists an increasing sequence of positive
real numbers (dj)j with dj ↗ +∞ such that the following inequality holds

2 (G(dj)−G(s)) > ρ(d2j − s2), ∀ s ∈ [0, dj [. (2.3)

Assume that (x(t), y(t)) is a solution of (S+
λ ) with x(0) ≥ dj , y(0) = 0 and

x(t1) = dj . Note also that y(t1) ≤ 0 (cf. Lemma 2.1). Let [t1, t̃] ⊆ [t1, t2] be
the maximal closed subinterval of [t1, t2] where x(t) ≥ 0 (and, necessarily, also
y(t) ≤ 0). From system (S+

λ ), using the fact that a+(ξ) ≥ δ for a.e. ξ ∈ [t1, t],
we have

yy′ + λδg(x)x′ ≥ 0, a.e in [t1, t̃],

which yields a map ξ �→ 1
2y(ξ)

2+λδG(x(ξ)) nondecreasing in [t1, t̃]. This in turn
implies that, for all ξ ∈ [t1, t̃],

y(ξ)2 + 2λδG(x(ξ)) ≥ y(t1)
2 + 2λδG(x(t1)) ≥ 2λδG(x(t1)) = 2λδG(dj).

Using (2.3), in the above inequality, we obtain

x′(ξ)2 = y(ξ)2 ≥ λδρ(d2j − x(ξ)2), ∀ ξ ∈ [t1, t̃] (2.4)

and, as a further consequence, we also deduce∫ dj

x(t̃)

1√
d2j − x2

dx =

∫ t̃

t1

−x′(ξ)√
d2j − x(ξ)2

dξ ≥ (t̃− t1)
√
λδρ.
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Notice that x(ξ) < dj for all t1 < ξ ≤ t̃ as x′ = y is strictly decreasing on [t1, t̃]
and hence also x(t) is strictly decreasing as y(t1) ≤ 0.

We claim that t̃ < t2 . Indeed, otherwise,∫ dj

0

1√
d2j − x2

dx ≥
∫ dj

x(t2)

1√
d2j − x2

dx ≥ (t2 − t1)
√
λδρ.

This provides a contradiction because
∫ dj

0
1/

√
d2j − x2 dx = π/2, while, accord-

ing to the choice of ρ in (2.2), we have (t2 − t1)
√
λδρ > π/2.

We have thus proved that x(t) vanishes at some time t̃ ∈ ]t1, t2[ . The in-
equality y(t)2/λδρ+ x(t)2 ≥ d2j , for all t ∈ [t1, t̃ ], follows from (2.4).

Lemma 2.3. Suppose that a+ ∈ L∞([0, σ]) and let G∞ = 0. For any fixed
0 < θ < 1 and 0 < ν < π/2, there exists an increasing sequence of positive
numbers (βj)j with limβj = +∞ for which the following property holds: If
(x(t), y(t)) is any solution of (S+

λ ) with x(0) = βj , y(0) = 0, then

• θβj ≤ x(t) ≤ βj , ∀ t ∈ [0, σ],

• tan(|y(t)|/x(t)) < tan(ν), ∀ t ∈ [0, σ].

Proof. Let θ ∈ ]0, 1[ and ν ∈ ]0, π/2[ be two fixed constants. The assumption
G∞ = 0 implies that lim sups→+∞(εs2− 2G(s)) = +∞, for every ε > 0. Hence,
following [13], there exists an increasing sequence of positive real numbers (βε

j )j
with βε

j ↗ +∞ such that the following inequality holds

2
(
G(βε

j )−G(s)
)
< ε((βε

j )
2 − s2), ∀ s ∈ [0, βε

j [ . (2.5)

Assume that (x(t), y(t)) is a solution of (S+
λ ) with x(0) = βε

j and y(0) = 0.
Recall from Lemma 2.1 also that y(t) ≤ 0 for all t ∈ [0, σ], so that x(t) ≤ βε

j for
all t ∈ [0, σ].

We claim that x(t) ≥ θβε
j for all t ∈ [0, σ]. To prove this claim, suppose, by

contradiction that there exists a maximal interval [0, t̂] ⊂ [0, σ[ such that

θβε
j ≤ x(ξ) ≤ βε

j , ∀ ξ ∈ [0, t̂], with x(t̂) = θβε
j . (2.6)

From system (S+
λ ), using the fact that a+(ξ) ≤ ‖a+‖∞ for a.e. ξ ∈ [0, σ], we

have
yy′ + λ‖a+‖∞g(x)x′ ≤ 0, a.e in [0, t̂],

which yields a map ξ �→ 1
2y(ξ)

2 + λ‖a+‖∞G(x(ξ)) nonincreasing in [0, t̂]. This

in turn implies that, for all ξ ∈ [0, t̂],

y(ξ)2 + 2λ‖a+‖∞G(x(ξ)) ≤ y(0)2 + 2λ‖a+‖∞G(x(0)) = 2λ‖a+‖∞G(βε
j ).

Using (2.5), in the above inequality, we obtain that

x′(ξ)2 = y(ξ)2 ≤ λ‖a+‖∞ε((βε
j )

2 − x(ξ)2) (2.7)
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holds for all ξ ∈ [0, t̂]. As a further consequence, we have

∫ βε
j

θβε
j

1√
(βε

j )
2 − x2

dx =

∫ t̂

0

−x′(ξ)√
(βε

j )
2 − x(ξ)2

dξ

≤ t̂
√
λ‖a+‖∞ε ≤ σ

√
λ‖a+‖∞ε.

Since the left integral in the above inequality can be explicitly computed, as
(π/2)− arcsin θ (independently on βε

j ), we obtain

π

2
< arcsin θ + σ

√
λ‖a+‖∞ε,

which is clearly false if ε is chosen sufficiently small, namely

0 < ε <
(π2 − arcsin θ)2

σ2λ‖a+‖∞
. (2.8)

For such a choice of ε > 0 we can find a sequence (βε
j )j such that θβε

j ≤ x(t) ≤ βε
j

for all t ∈ [0, σ]. As a consequence, we also know that condition (2.7) holds for
all ξ ∈ [0, σ] and therefore, recalling that y(t) ≤ 0, we deduce

|y(t)| ≤ βε
j

√
λ‖a+‖∞ε, ∀ t ∈ [0, σ].

This in turn implies that tan(|y(t)|/x(t)) < tan(ν), for all t ∈ [0, σ], provided
that

0 < ε <
(θ tan(ν))2

λ‖a+‖∞
. (2.9)

This way the theorem is proved by choosing a sequence (βε
j )j for a constant ε

satisfying (2.8) and (2.9).

Lemma 2.4. Given a+ ∈ L∞([0, σ]), suppose that there exist an interval
[t1, t2] ⊆ [0, σ] and a constant δ > 0 such that a+(t) ≥ δ for a.e. t ∈ [t1, t2].
Assume also (G∗) and let λ > 0 be such that (2.1) holds. Let also 0 < θ < 1,
0 < ν < π/2 be fixed. Then, there exist two increasing sequences of positive
numbers (αj)j and (βj)j with limαj = limβj = +∞ and

r < α1 < θβ1 < β1 < α2 < . . . αj < θβj < βj < αj+1 < . . . (2.10)

for which the following properties hold:

• x(t; 0, αj , 0) vanishes at some t < t2 ,

• θβj ≤ x(t; 0, βj , 0) ≤ βj, tan(|y(t; 0, βj , 0)|/x(t; 0, βj , 0)) < tan(ν) ∀t ∈
[0, σ]

Proof. We choose a constant ρ > 0 in accord to (2.2) and consider a corre-
sponding sequence (dj)j as in Lemma 2.2. Next, we apply Lemma 2.3 and find
a sequence (βj)j . We can also suppose that

r < d1 < θβ1 < β1 < d2 < . . . dj < θβj < βj < dj+1 < . . .

9



up to a subsequence, if necessary. By the intermediate value theorem and the
continuous dependence of the solutions on the initial data, for each j, there
exists αj with dj ≤ αj < βj such that x(t1; 0, αj , 0) = dj . At this point, a direct
application of Lemma 2.2 and Lemma 2.3 allows to conclude the proof of the
theorem.

Until now we have analyzed the behavior of the solutions in the interval
[0, σ] where aλ,μ(t) ≥ 0 for a.e. t. As a next step, we are going to consider the
solutions on the interval [σ, T ]. Due to the sign of aλ,μ(t)g(x(t)) which implies
the convexity of x(t) in the interval [σ, T ], in general, we cannot guarantee that
the solutions are defined on the whole interval. For this reason, we introduce a
truncation on the nonlinear term of the form

gM (x) =

{
g(x), if x ≤ M,

g(M), if x > M,

where M > 0 is a given constant. Accordingly, we study the system

(S−
μ )

{
x′ = y,

y′ = μa−(t)gM (x),

on the interval [σ, T ]. In the foregoing results we shall require a further technical
condition on the weight function, namely that a(t) is not identically zero a.e.
in each right neighborhood of σ. This can be equivalently expressed by the
following condition:

A−(t) > 0, ∀ t ∈ ]σ, T ],

where we have set

A−(t) :=
∫ t

σ

a−(ξ) dξ. (2.11)

This hypothesis is not restrictive in view of (a∗) (see [4, Remark 2.2] where
an analogous situation is treated). In this framework, we obtain the following
result.

Lemma 2.5. For any fixed r > 0, q ∈]0, 1[ and C > 0, there is a constant μ̂ > 0
such that for each μ > μ̂ the following holds: If (x(t), y(t)) is any solution of
(S−

μ ) with x(σ) = r and 0 > y(σ) ≥ −C, then

• x(t) > qr for all t ∈ [σ, T ],

• y(t) vanishes at some t ∈ ]σ, T [ .

Proof. First of all, notice that there exists 0 < ε ≤ r(1−q)/C such that x(t) > qr
for all t ∈ [σ, σ + ε[. Indeed,

x(t) = x(σ) +

∫ t

σ

y(ξ) dξ ≥ r −
∫ t

σ

C dξ = r − C(t− σ)

> r − Cε ≥ qr, ∀t ∈ [σ, σ + ε[.
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Therefore, let us fix ε as above and assume by contradiction that there is
t̃ ∈ [σ + ε, T ] such that x(t̃) = qr and x(t) > qr for all t ∈ [σ, t̃[. By denoting
with κg,r := min{gM (s) : qr ≤ s ≤ r}, we have

x′′(t) = y′(t) = μa−(t)g(x(t)) ≥ μa−(t)κg,r, for a.e. t ∈ [σ, t̃].

After a first integration on [σ, t], we get

x′(t) = y(t) ≥ y(σ) + μκg,rA
−(t) ≥ −C + μκg,rA

−(t), ∀ t ∈ [σ, t̃].

Integrating again in the same interval we have

x(t) ≥ x(σ)− C(t− σ) + μκg,r

∫ t

σ

A−(ξ) dξ

≥ r − C(T − σ) + μκg,r

∫ σ+ε

σ

A−(ξ) dξ.

The evaluation of the above inequality for t = t̃ yields to a contradiction if μ is
sufficiently large, namely

μ ≥ μ1 :=
C(T − σ)

κg,r

∫ t

σ
A−(ξ) dξ

.

At this step, we have proved that x(t) > qr for all t ∈ [σ, T ].
Suppose now, by contradiction that y(t) never vanishes on ]σ, T ]. Then, since

y(σ) < 0, we have x′(t) = y(t) < 0 for all t ∈ [σ, T ]. Hence the function x(t) is
decreasing on [σ, T ] and, therefore, qr < x(t) < r for all t ∈ ]σ, T ]. Accordingly,
the inequality y′(t) ≥ μa−(t)κg,r holds for a.e. t ∈ [σ, T ]. With an integration
on [σ, t] we obtain

y(t) ≥ −C + μκg,rA
−(t), ∀ t ∈ [σ, T ].

So that
0 > y(T ) ≥ −C + μκg,rA

−(T ).

A contradiction occurs whenever μ is sufficiently large, namely

μ ≥ μ2 :=
C

κg,r

∫ σ+T

σ
a−(ξ) dξ

.

At this point, the conclusion follows by taking μ̂ ≥ max{μ1, μ2}.

3. Main results

As said in the Introduction, our goal is to prove the existence of positive solutions
for the Neumann problem

(Pλ,μ)

⎧⎪⎨
⎪⎩
u′′ + aλ,μ(t)g(u) = 0,

u(t) > 0, ∀ t ∈ [0, T ],

u′(0) = u′(T ) = 0,

11



where the continuous map g : R+ → R
+ verifies (g∗) and the weight term aλ,μ

is defined as in (1.1) for a function a ∈ L1([0, T ]) satisfying (a∗). Our method
of proof is based on the shooting method and therefore we need to analyze the
Poincaré map associated with the planar system

(Sλ,μ)

{
x′ = y,

y′ = −(λa+(t)− μa−(t))gM (x),

where gM is defined as in (1.2) for a suitable constant M > 0. In order to have
the Poincaré map well defined, we shall implicitly assume the uniqueness of the
solutions for the associated initial value problems. Obviously, this is guaranteed
if g is locally Lipschitz continuous as we have assumed for convenience in the
exposition in Section 2. However, this condition can be removed and this will be
discussed at the end of the proof of Theorem 3.1. Recall that, given an interval
[τ0, τ1] ⊆ [0, T ], the Poincaré map for (Sλ,μ) on the interval [τ0, τ1] is the planar
map which, to any point z0 = (x0, y0) ∈ R

2, associates the point (x(τ1), y(τ1))
where (x(t), y(t)) is the solution of (Sλ,μ) with (x(τ0), y(τ0)) = z0. Such map
will be denoted by Φτ1

τ0 .
A solution of (Pλ,μ) can be found by looking for a point P0 = (x0, 0) ∈

X+ := {(x, 0) : x > 0} such that x0 ≤ M and ΦT
0 (P0) ∈ X+. In this case,

the first component u(t) of the map t �→ Φt
0(P0) is a solution of (Pλ,μ) with

u(0) = x0 . More formally, we can state the following lemma.

Lemma 3.1. Suppose that there is P0 = (x0, 0) ∈ X+ with x0 ≤ M such that
ΦT

0 (P0) ∈ X+. Let also (x(t), y(t)) be the solution of (Sλ,μ) with (x(0), y(0)) =
P0. Then, u(t) := x(t) is a solution of (Pλ,μ) with u(t) ≤ M and u′(t) = y(t) ≤
0 for all t ∈ [0, T ].

Proof. Consider at first the solution in the interval [0, σ]. As x(t) is concave in
such interval, we have that x(t) ≤ x(0) ≤ M and we also claim that x(t) > 0 for
all t ∈ [0, σ]. Indeed, if by contradiction x(t) vanishes somewhere, we take t̂, with
0 < t̂ ≤ σ, as its first zero. As a consequence of the concavity, y(t̂) = x′(t̂) < 0
and then, x′(t) = x′(t̂) < 0 for all t ∈ [t̂, T ], because gM (s) = 0 for s ≤ 0. Thus,
we have the contradiction ΦT

0 (P0) �∈ X+. From y′(t) = −λa+(t)g(x(t)), with
g(x(t)) > 0 for all t ∈ [0, σ] and a+ �≡ 0, we deduce that x′(σ) = y(σ) < 0.
On the other hand, the function x(t) is convex on [σ, T ] with x(T ) > 0 and
x′(T ) = 0. Hence, 0 < x(T ) ≤ x(t) < x(σ) for all t ∈ [σ, T ] and this concludes
the proof.

In view of the hypothesis on the weight function, which state that it assumes
different sign on the intervals [0, σ] and [σ, T ], it will be convenient to split the
Poincaré map as

ΦT
0 := ΦT

σ ◦ Φσ
0 ,

where Φσ
0 and ΦT

σ are the Poincaré maps associated with systems (S+
λ ) and

(S−
μ ), respectively. Consistently with the notation introduced at the beginning
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of Section 2, we notice that for any point P0 = (x0, 0) ∈ X+ with x0 ≤ M, we
have

Φt
0(P0) = (x(t; 0, x0, 0), y(t; 0, x0, 0)), ∀ t ∈ [0, σ].

To formulate the next result, we introduce the following notation. For any
real number η, we denote by Lη := {(η, y) ∈ R

2 : y < 0} the negative half-line
x = η. Given two points (A, 0), (B, 0) ∈ X+, the segment contained in X+ and
joining the two points is denoted by AB.

Proposition 3.1. Given a+ ∈ L∞([0, σ]), suppose that there exist an interval
[t1, t2] ⊆ [0, σ] and a constant δ > 0 such that a+(t) ≥ δ for a.e. t ∈ [t1, t2].
Assume also (G∗) and let λ > 0 be such that (2.1) holds. Furthermore, let r > 0
be fixed. Then, for any given integer k ≥ 1 there are constants M > r, CM > r
and points

r < A′
1 < B′

1 < B′′
1 < A′′

1 < A′
2 < · · · < A′

k < B′
k < B′′

k < A′′
k < M,

such that, setting

Γ′
j := Φσ

0

(
A′

jB
′
j

)
, Γ′′

j := Φσ
0

(
B′′

j A
′′
j

)
,

we have
Γ′
j ,Γ

′′
j ⊆

(
[0, r]× [−CM , 0[

)
, (3.1)

with
Γ′
j ∩ L−

0 �= ∅ �= L−
r ∩ Γ′

j , Γ′′
j ∩ L−

0 �= ∅ �= L−
r ∩ Γ′′

j , (3.2)

for all j = 1, . . . , k.

Proof. Given λ > 0 and r > 0, we choose 0 < θ < 1 and 0 < ν < π/2. So, an
application of Lemma 2.4 provides two sequences (αj)j and (βj)j which satisfy
(2.10). Moreover, for any integer k ≥ 1, we take a constant M such that

M > αk . (3.3)

Since M is now fixed, follows that also the vector field in the system (Sλ,μ) is so.
The constant CM > 0 will be chosen so that any possible solution (x(t), y(t)) of
(Sλ,μ) with 0 < x(0) ≤ M and y(0) = 0, satisfies

−CM ≤ y(t) ≤ 0, ∀ t ∈ [0, σ].

Notice that the constant CM depends on the function a+ and the constants λ
and M , but does not depend on the parameter μ. In fact, we can estimate CM

as follows:
CM := λ‖a+‖L1 max

s∈[0,M ]
g(s).

For the rest of the proof we consider the solutions of the system (Sλ,μ) on the
interval [0, σ], with an initial point (c, 0) such that 0 < c ≤ M . These are
exactly the solutions (x(· ; 0, c, 0), y(· ; 0, c, 0)) of the system (S+

λ ).
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As a first step, for j = 1, . . . , k, we suppose that αj ≤ c ≤ βj . By Lemma 2.4,
it follows that

x(σ; 0, αj , 0) < 0, x(σ; 0, βj , 0) ≥ θβj > r.

By continuity, we can determine a sub-interval [A′
j , B

′
j ] ⊆ ]αj , βj [ such that

x(σ; 0, A′
j , 0) = 0, x(σ; 0, B′

j , 0) = r and 0 < x(· ; 0, c, 0) < r for all c ∈ ]A′
j , B

′
j [ .

As a second step, for j = 1, . . . , k, we suppose that βj ≤ c ≤ αj+1. By
Lemma 2.4, it follows that

x(σ; 0, αj+1, 0) < 0, x(σ; 0, βj , 0) ≥ θβj > r.

Again, by continuity, we can determine a sub-interval [B′′
j , A

′′
j ] ⊆ ]βj , αj+1[ such

that x(σ; 0, B′′
j , 0) = r, x(σ; 0, A′′

j , 0) = 0 and 0 < x(σ ; 0, c, 0) < r for all c ∈
]B′′

j , A
′′
j [ . Moreover, −CM ≤ y(σ ; 0, c, 0) < 0 (recalling also Lemma 2.1).

To conclude, we define

Γ′
j := Φσ

0

(
A′

jB
′
j

)
, Γ′′

j := Φσ
0

(
B′′

j A
′′
j

)
, ∀ j = 1, . . . , k.

This way each arc, Γ′
j and Γ′′

j with j ∈ {1, . . . , k}, satisfies all the desired
properties.

Remark 3.1. We observe that the constants βj are precisely determined in
Lemma 2.3 by means of (2.5), instead of the constants αj, for which we know
only that they belong to [dj , βj [ . With this respect, it might be more convenient
to fix the constant M in terms of the values βj. For this reason, one could prefer
to replace the condition in (3.3) with M > βk+1.

Under this latter choice, notice that a further arc, Γ′
k+1 := Φσ

0

(
A′

k+1B
′
k+1

)
with [A′

k+1B
′
k+1] ⊆ ]αk+1, βk+1[ defined as in the proof, can be determined. Fi-

nally, if we assume M > βk+1, we have 2k + 1 arcs defined as images through
the Poincaré map of pairwise disjoint compact sub-intervals of X+.

The next result deals with the solutions of the system (Sλ,μ) in the time
interval [σ, T ], or equivalently, the ones of (S−

μ ). As previously observed, we will
suppose that σ is chosen so that A−(t) > 0 for all σ < t ≤ T, where A−(t) is
defined according to (2.11).

Proposition 3.2. Given r > 0 and C > r, there exists a constant μ̄ > 0 such
that for each μ > μ̄ the following holds: For any connected set Γ with

Γ ⊆ [0, r]× [−C, 0[, Γ ∩ L−
0 �= ∅ �= L−

r ∩ Γ,

there exists at least a solution (x(t), y(t)) of the system (S−
μ ) with (x(σ), y(σ)) ∈

Γ, (x(T ), y(T )) ∈ X+ such that r ≥ x(t) > 0 and y(t) ≤ 0 for all t ∈ [σ, T ].

Proof. For r and C given as above, let us fix a parameter q with 0 < q < 1.
From Lemma 2.5, we have that for each μ sufficiently large (i.e. μ > μ̂), any
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solution (x(t), y(t)) of (S−
μ ) with x(σ) = r and −C ≤ y(σ) < 0 is such that

x(t) ≥ qr for all t ∈ [σ, T ] and y(t) = 0 for some t ∈ ]σ, T ]. Let us fix now μ > μ̂.
We choose a point Q ∈ L−

r ∩ Γ and denote by (xQ(t), yQ(t)) the solution of
(S−

μ ) having Q as initial point at the time t = σ. By Lemma 2.5 there exists a
first time tQ ∈ ]σ, T ] such that y(tQ) = 0. If tQ = T, we are done. Otherwise,
yQ(tQ) = 0 for σ < tQ < T and, by the convexity of xQ(t) in the interval [σ, T ],
we have yQ(T ) ≥ yQ(tQ) = 0.

Similarly, we select a point P ∈ Γ ∩ L−
0 and denote by (xP (t), yP (t)) the

solution of (S−
μ ) which has P as initial point at the time t = σ. We have

xP (σ) = 0 and x′
P (σ) = yP (σ) < 0. Moreover, g(s) = 0 for all s ≤ 0. Hence,

yP (t) = yP (σ) for all t ∈ [σ, T ] and, therefore, yP (T ) < 0.
The continuous dependence of the solutions on the initial data and the con-

nectedness of Γ imply that there exists a point in Γ \ L−
0 from which starts (at

the time t = σ) a solution (x(t), y(t)) of (S−
μ ) such that y(T ) = 0. This way, it

follows also that x(t) > 0 for all t ∈ [σ, T ] (in fact, if not, we obtain a contra-
diction from g(s) = 0 for all s ≤ 0). Finally, we also observe that y(t) ≤ 0 for
all t ∈ ]σ, T ] (otherwise, if we suppose that y(t) > 0 for some t ∈ ]σ, T [, then a
contradiction is reached by a convexity argument). Thus the thesis is achieved
by choosing any μ̄ ≥ μ̂.

We are now in position to prove our main result that establishes the existence
and the multiplicity of positive solutions for problem (Pλ,μ).

Theorem 3.1. Let g : R
+ → R

+ be a continuous function satisfying (g∗)
and (G∗) with s �→ g(s)/s upper bounded in a right neighborhood of 0. Let
a ∈ L1([0, T ]) satisfying (a∗) with a+ ∈ L∞([0, σ]). Suppose also that there are
an interval [t1, t2] ⊆ [0, σ] and a constant δ > 0 such that a+(t) ≥ δ for a.e.
t ∈ [t1, t2]. Then, there exists λ∗ ≥ 0 such that, for each λ > λ∗, r > 0 and for
every integer k ≥ 1, there is a constant μ∗ = μ∗(λ, r, k) > 0 such that for each
μ > μ∗ the problem (Pλ,μ) has at least 2k solutions which are nonincreasing on
[0, T ] and satisfy 0 < u(t) ≤ r for each t ∈ [σ, T ].

Proof. Our demonstration will be divided into two parts. In the first one we
let the shooting method work within its classical framework, by assuming g(·)
locally Lipschitz continuous. In the second part, we present two possible ways
in order to extend the result obtained in the previous step to the case in which
g(·) is only continuous.

Step 1. We suppose that g(·) is locally Lipschitz continuous. Notice that, under
this condition it follows immediately s �→ g(s)/s upper bounded in a right
neighborhood of 0.
First of all, we define a constant λ∗ ≥ 0 as λ∗ = 0 if G∞ = +∞ or λ∗ =
π2/4(t2 − t1)

2δG∞ if G∞ < +∞. In this manner, the inequality in (2.1) is
satisfied for each λ > λ∗.

We fix now λ > λ∗, r > 0 and an integer k ≥ 1. In accord to Proposition 3.1,
there are constants M > r, CM > r and points

r < A′
1 < B′

1 < B′′
1 < A′′

1 < A′
2 < · · · < A′

k < B′
k < B′′

k < A′′
k < M,
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such that conditions in (3.1) and (3.2) are satisfies for the arcs

Γ′
j := Φσ

0

(
A′

jB
′
j

)
, Γ′′

j := Φσ
0

(
B′′

j A
′′
j

)
.

At this step we apply Proposition 3.2 for C := CM and determine a constants μ̄
such that, for each μ > μ̄, the following holds: for each Γ′

j , Γ
′′
j with j ∈ {1, . . . , k}

there exist points ζ ′j ∈ Γ′
j and ζ ′′j ∈ Γ′′

j such that

ΦT
σ (ζ

′
j), Φ

T
σ (ζ

′′
j ) ∈ X+.

Notice that the constant μ̄ does not depend on the particular choice of the arcs
Γ′
j or Γ′′

j . It depends only on r and CM . The last constant, in turn, depends on
M and therefore it is derived from λ and k.

On the other hand, ζ ′j and ζ ′′j are images through the Poincaré map Φσ
0 of the

initial points Z ′
j ∈ A′

jB
′
j and Z ′′

j ∈ B′′
j A

′′
j , respectively. Then, we have found 2k

points Z ′
j , Z

′′
j ∈ X+ such that ΦT

0 (Z
′
j),Φ

T
0 (Z

′′
j ) ∈ X+. From Lemma 3.1 follows

that all the solutions (x(t), y(t)) starting from these initial points are such that
0 < x(t) < M and y(t) ≤ 0, for all t ∈ [0, T ]. Hence, they are solutions of the
system {

x′ = y,

y′ = −aλ,μ(t)g(x(t)).

In particular, they correspond to solutions of the problem (Pλ,μ) with initial
conditions (u(0), u′(0)) = Z ′

j or (u(0), u′(0)) = Z ′′
j , respectively. All these

solutions are decreasing in [0, T ] by construction and, from Proposition 3.2,
they satisfy the condition 0 < u(t) ≤ r, for all t ∈ [σ, T ]. Thus, the result is
proved by choosing any μ∗ ≥ μ̄ and g(·) locally Lipschitz continuous.

Step 2. At this point the Lipschitz condition is no more assumed. Usually, one
can follow two possible ways in order to achieve the result for a nonlinearity
which is only continuous. A first approach consists in approximating the non-
linear term g(·) with a sequence of locally Lipschitz functions gn : R+ → R

+

satisfying (g∗) and such that gn → g uniformly on compact sets, for example,
using mollifiers as in [26, p. 294]. Then, one can prove that each approximating
equation has a solution un with (un(t), u

′
n(t)) ∈ K, ∀ t ∈ [0, T ], where K is a

compact set which can be chosen independently on n. At last, from the Ascoli-
Arzelà Theorem we obtain a solution (u(t), u′(t)) ∈ K, ∀ t ∈ [0, T ] of the original
equation, passing to the limit along a subsequence. This is a standard proce-
dure well described in the book of Krasnosel’skĭı [19]. Moreover, this approach
is also exploited in [26, 27] where some specific results of existence and multi-
plicity of solutions are obtained via the shooting method without uniqueness of
the Cauchy problems. In our case, this method can be safely applied by choos-
ing the compact intervals A′

jB
′
j and B′′

j A
′′
j for j = 1, . . . , k pairwise disjoint and

observing that the initial points of the solutions of the approximating problems
belong to these intervals (at least for n sufficiently large).

A second possible point of view involves a procedure of “shooting without
uniqueness”, that gives up from the beginning to the hypothesis of uniqueness
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for the Cauchy problems. In these framework we can apply a generalized version
of the Hukuhara-Kneser result, as presented in [7] or in [8, Section 2]. It is based
on the following observation. Let [τ0, τ1] ⊆ [0, T ]. Given a set E0 ⊆ R

2, let us
consider the set E1 made by all the points of R2 of the form (x(τ1), y(τ1)), where
(x(t), y(t)) is any solution of the system such that (x(τ0), y(τ0)) ∈ E0. Then,
E1 is a compact/connected (or both) provided that E0 is a compact/connected
(or both), respectively (cf. [7, p. 22]). In this context, for all j = 1, . . . , k the
sets Γ′

j and Γ′′
j given as in Proposition 3.1 are well defined continua (instead of

arcs). Moreover, to prove Proposition 3.2, instead of using Bolzano Theorem,
on the function y(t) we just observe that a connected set Γ at the time t = σ
is transported into a connected set at the time t = T , whose projection on the
y-axis contains y = 0.

In conclusion, we have found 2k non-negative solutions of

u′′ + aλ,μ(t)g(u) = 0, u′(0) = u′(T ) = 0,

which are nonincreasing on [0, T ] and satisfy 0 ≤ u(t) ≤ r for each t ∈ [σ, T ].
Since s �→ g(s)/s is upper bounded in a right neighborhood of 0, a maximum
principle argument applies and the positivity of the solutions on [0, T ] is guar-
anteed.

Without the condition

(g0) lim sup
s→0+

g(s)

s
< +∞

we can prove that any solution found satisfies

u(t) ≥ r, ∀ t ∈ [0, σ] and 0 ≤ u(t) ≤ r ∀ t ∈ [σ, T ].

Nevertheless, without assuming (g0), we cannot guarantee, in general, that u(t)
does not vanishes at some point of the interval when the weight is negative.
Examples in this direction are given in [1, 5] and they show that (g∗) along
with (g0) represent the minimal equipment needed to get the positivity of the
solutions. For this reason, the main hypothesis which characterizes our result
is the “oscillatory condition” (G∗).

Remark 3.2. As a main assumption on the weight term, we have supposed that
the function a(·) goes from positive to negative values. One could also consider
a dual condition instead of (a∗), namely

(a∗∗) a(t) ≤ 0, a �≡ 0 for a.e. t ∈ [0, σ], a(t) ≥ 0, a �≡ 0 for a.e. t ∈ [σ, T ].

In this case, we derive a different version of the Theorem 3.1 in which the
hypotheses have to be modified by assuming a+ ∈ L∞([σ, T ]) and a+(t) ≥ δ for
a.e. t in a suitable subinterval of [σ, T ]. As a conclusion, the existence of 2k
solutions to problem (Pλ,μ) is still guaranteed. Such solutions, in this case, are
nondecreasing on [0, T ] and satisfy 0 < u(t) ≤ r for each t ∈ [0, σ]. To prove this
assertion, we can either apply Theorem 3.1 with the change of variable t �→ T−t,
or apply the shooting method backward in time from t = T to t = 0.
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4. Radially symmetric solutions for PDEs

In this section we extend the preceding results to the case of some Neumann
problems in R

N , for N ≥ 2. So, we consider

(Nλ,μ)

⎧⎪⎨
⎪⎩
Δu+ wλ,μ(x)g(u) = 0 in Ω,

u(x) > 0 in Ω,
∂u
∂n = 0 on ∂Ω,

where the weight function depends on the real positive parameters λ, μ and is
defined as

wλ,μ(x) := λw+(x)− μw−(x),

for w ∈ L1(Ω). We shall focus our study to the case when the domain Ω is an
open ball B(0, R) or an open annulus B(0, R2) \ B[0, R1], where with B[0, r]
we denote the closed ball of center the origin and radius r > 0. As usual, in
these situations the problem can be reduced to a Neumann boundary value
problem with an ordinary differential equation if w(x) has a radial symmetry.
Accordingly, from now on we suppose that

w(x) = Q(|x|), (4.1)

where | · | denotes the Euclidean norm in R
N .

We look for radially symmetric positive solutions of (Nλ,μ), namely solutions
of the form

u(x) = U(�), with � := |x|, (4.2)

and we discuss separately the two cases of our interest.

4.1. Neumann problem for an annular domain

Let R2 > R1 > 0 be two fixed radii and let us consider the Neumann problem
(Nλ,μ) for the domain

Ω := B(0, R2) \B[0, R1].

We suppose that w(·) is as in (4.1), with Q ∈ L1([R1, R2]). By means of (4.2)
our problem is reduced to the study of⎧⎪⎪⎨

⎪⎪⎩
U ′′(�) +

N − 1

�
U ′(�) +Qλ,μ(�)g(U(�)) = 0,

U(x) > 0, ∀ � ∈ [R1, R2],

U ′(R1) = U ′(R2) = 0.

(4.3)

By the classical change of variable t = h(�) :=
∫ �

R1
ξ1−N dξ, � = �(t) := h−1(t),

we set

v(t) := U(�(t)), a(t) := �(t)2(N−1)Q(�(t)) and T :=

∫ R2

R1

ξ1−N dξ,
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this way it follows that problem (4.3) is equivalent to⎧⎪⎨
⎪⎩
v′′(t) + aλ,μ(t)g(v(t)) = 0,

v(t) > 0, ∀ t ∈ [0, T ],

v′(0) = v′(T ) = 0,

(4.4)

see for instance [3, 12]. Hence, we enter in the framework of problem (P) and
we can apply directly Theorem 3.1 to the system (4.4). Therefore we can state
the following result.

Theorem 4.1. Let g : R
+ → R

+ be a continuous function satisfying (g∗),
(g0) and (G∗). Let Q ∈ L1([R1, R2]) with Q+ ∈ L∞ and suppose there exists
σ ∈ ]R1, R2[ such that

Q(�) ≥ 0, Q �≡ 0 for a.e. � ∈ [R1, σ], Q(�) ≤ 0, Q �≡ 0 for a.e. � ∈ [σ,R2].

Suppose also that there are an interval [t1, t2] ⊆ [R1, σ] and a constant δ > 0
such that Q+(�) ≥ δ for a.e. � ∈ [t1, t2]. Then, there exists λ∗ ≥ 0 such
that, for each λ > λ∗, r > 0 and for every integer k ≥ 1, there is a constant
μ∗ = μ∗(λ, r, k) > 0 such that for each μ > μ∗ the problem (Nλ,μ) has at least
2k radially symmetric solutions which are nonincreasing in � on [R1, R2] and
satisfy 0 < u(x) ≤ r for each x with |x| ∈ [σ,R2].

4.2. Neumann problem for a ball

Let R > 0 be a fixed radius and let us consider the Neumann problem (Nλ,μ)
for the domain

Ω := B(0, R).

We suppose that w(·) is as in (4.1), with Q ∈ L1([0, R]). By means of (4.2), our
problem is reduced to⎧⎪⎪⎨

⎪⎪⎩
U ′′(�) +

N − 1

�
U ′(�) +Qλ,μ(�)g(U(�)) = 0, 0 < � ≤ R,

U(x) > 0, ∀ � ∈ [0, R],

U ′(0) = U ′(R) = 0,

(4.5)

which has a singularity at � = 0. The previous problem is in its turn equivalent
to ⎧⎪⎨

⎪⎩
(
�N−1U ′(�)

)′
+ �N−1Qλ,μ(�)g(U(�)) = 0, 0 < � ≤ R,

U(x) > 0, ∀ � ∈ [0, R],

U ′(0) = U ′(R) = 0.

(4.6)

In this case, the following result holds.

Theorem 4.2. Let g : R+ → R
+ be a continuous function satisfying (g∗), (g0)

and (G∗). Let Q ∈ L1([0, R]) with Q+ ∈ L∞ and suppose there exists σ ]0, R[
such that

Q(�) ≥ 0, Q �≡ 0 for a.e. � ∈ [0, σ], Q(�) ≤ 0, Q �≡ 0 for a.e. � ∈ [σ,R].
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Suppose also that there are an interval [t1, t2] ⊆ [0, σ] and a constant δ > 0
such that Q+(�) ≥ δ for a.e. � ∈ [t1, t2]. Then, there exists λ∗ ≥ 0 such
that, for each λ > λ∗, r > 0 and for every integer k ≥ 1, there is a constant
μ∗ = μ∗(λ, r, k) > 0 such that for each μ > μ∗ the problem (Nλ,μ) has at least 2k
radially symmetric solutions which are nonincreasing in � on [0, R] and satisfy
0 < u(x) ≤ r for each x with |x| ∈ [σ,R].

Proof. Our proof follows verbatim that of Theorem 3.1. For this reason, we focus
our attention only to those points which require some technical adjustments due
to the presence of the singularity at ρ = 0. In particular, we will split our proof
in two steps.

Step 1. Let g(·) be a locally Lipschitz continuous function. We also truncate
g(·) as in (1.2) at the level M > 0, so that the differential equation in (4.5) can
be read in the phase-plane equivalently as{

x′ = y,

y′ = −N−1
t y −Qλ,μ(t)gM (x),

(4.7)

with t = � > 0.

Notice that the associated initial value problem has a local solution (see the
Appendix). The Lipschitz condition for g(·) and the boundedness of gM (·) also
imply that the local solution is unique and it can globally extended to the all
interval [0, R]. For this reason, as is known in the literature (cf. [6]), the shooting
method can be applied also in this context.

In order to recover the results in Section 2 and Section 3, we discuss now
the qualitative behavior of the solutions in both the intervals [0, σ] and [σ,R].

Analysis of the solutions for t ∈ [0, σ]. We will suppose, without loss of general-
ity, that [t1, t2] ⊆]0, σ]. From

x′(t) = y(t) = −λ

∫ t

0
ξN−1a+(ξ)gM (x(ξ)) dξ

tN−1
,

we obtain y(t) ≤ 0 for all t ∈ [0, σ]. Furthermore, analogously as in Lemma 2.1,
there exists t̄ ∈ [0, σ[ such that y(t) = 0 for all 0 ≤ t ≤ t̄ and y(t) < 0 for all
t ∈ ]t̄, σ]. We also find immediately a constant CM > 0 such that any possible
solution (x(t), y(t)) of (4.7) with 0 < x(0) ≤ M and y(0) = 0, satisfies

−CM ≤ y(t) ≤ 0, ∀ t ∈ [0, σ].

Now we give an analogous result of Lemma 2.2. Indeed, within the same
framework of that lemma and, in particular for dj and ρ satisfying (2.3), we
proceed as follows. Suppose that (x(t), y(t)) is a solution of (4.7) with M ≥
x(0) ≥ dj , y(0) = 0 and x(t1) = dj . As in Lemma 2.2, we denote by [t1, t̃] ⊆
[t1, t2] the maximal closed subinterval of [t1, t2] where x(·) ≥ 0 (and, necessarily,
also y(·) ≤ 0). From the equation

x′′ +
N − 1

t
x′ + λa+(t)g(x) = 0, (4.8)
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with the position z(t) := y(t)tN−1, we have

z′z + λa+(t)t2(N−1)g(x)x′ = 0.

Hence, it follows

z′(t)z(t) + λδt1
2(N−1)g(x)x′ ≥ 0, for a. e. t ∈ [t1, t2],

which implies that the function ξ �→ z(ξ)2+2λδt1
2(N−1)G(x(ξ)) is nondecreasing

in [t1, t̃]. From this, we obtain

−x′(ξ) = |y(ξ)| ≥
(
t1
t2

)N−1 √
λδρ

√
d2j − x(ξ)2, ∀ ξ ∈ [t1, t̃].

Apart from a multiplicative constant, notice that the above inequality is like the
one in (2.4), so that the same conclusion is achieved, if λ is taken sufficiently
large, namely

λδG∞ >

(
t2
t1

)2(N−1) (
π

2(t2 − t1)

)2

.

Finally, we give an analogous result of Lemma 2.3. Indeed, within the sane
framework of that lemma and, in particular for a given ϑ ∈ ]0, 1[, and for ε and
βε
j satisfying (2.5), we proceed as follows. Assume that (x(t), y(t)) is a solution

of (4.7) with 0 < x(0) = βε
j ≤ M and y(0) = 0. As in Lemma 2.2 we suppose by

contradiction that it is not true that x(t) ≥ θβε
j and then consider a maximal

interval [0, t̂] ⊂ [0, σ] such that (2.6) holds.
From the equation (4.8), we obtain

x′′x′ + λ‖a+‖∞g(x)x′ ≤ x′′x′ + λa+(t)g(x)x′ = −N − 1

t
(x′)2 ≤ 0

which implies that the function ξ �→ x′(ξ)2 +2λ‖a+‖∞G(x(ξ)) is nonincreasing
in [0, t̂]. From now on we have only to repeat the same proof of Lemma 2.3.

With these results at hand and since the shooting method is working, we
can recover Lemma 2.4 and Proposition 3.1 without difficulty.

Analysis of the solutions for t ∈ [σ,R]. In this case, we are far from the singu-
larity (which is at t = 0) and so, via minor changes in the constants, we can
repeat the same analysis previously performed in Lemma 2.5. This way, the
Proposition 3.2 can be re-established again.

Having achieved all the preliminary results in Proposition 3.1 and in Proposi-
tion 3.2, we get the same conclusion of the proof of Step 1 of Theorem 3.1.

Step 2. Assume now that g(·) is only continuous (and not necessarily locally
Lipschitz). Then, in this case we can apply the standard techniques already
recalled in Step 2 of the proof of Theorem 3.1.
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5. Final remarks

In the presents paper we have studied only the case of linear second order
differential operators u′′ and Δu. The technical tools we have developed for
proving our main results (Lemma 2.2 and Lemma 2.3) rely essentially on time-
mapping estimates associated to the autonomous equation

u′′ + g(u) = 0. (5.1)

This fact suggest different directions along which we could provide extensions
of our results. On the one hand, we can replace the condition (G∗) with an
hypothesis of the form

(T∗) 0 ≤ T∞ := lim inf
c→+∞ T (c) < T ∞ := lim sup

c→+∞
T (c) = +∞,

where, for c > 0, T (c) is the time-mapping associated to (5.1) defined as

T (c) := 2

∫ c

0

ds√
2(G(c)−G(s))

.

Within (T∗), we can deal with more general linear differential operators such as
u′′ +m(t)u′. We refer to [25] for analogous considerations.

It is worth noticing that the notion of time-mapping, associated to second
order autonomous differential equations, plays an important role in the study of
different nonlinear problems. Indeed, this technique has been successfully em-
ployed in different contexts. In the present paper, the time-mapping is defined
in a compact interval [0, c]. There are, however, significant applications also
when the time-mapping is considered in a neighborhood of infinity. With this
respect, we refer to the interesting work [11] where the use of time-mappings has
been effectively applied in the search of blow up solutions for nonlinear PDEs
with non-monotone nonlinearities.

On the other hand, there is also a great deal of interest in studying differential
equations involving nonlinear differential operators, such as p-Laplacians. A
condition analogous to (G∗) is considered in [2] for Neumann problems in the
p-Laplacian setting. With this respect, we remark that the work done in Section
2 addresses to use our technique to study the problem⎧⎪⎨

⎪⎩
(φ(u′))′ + a(t)g(u) = 0,

u(t) > 0, ∀ t ∈ [0, T ],

u′(0) = u′(T ) = 0,

using information about the time-mapping associated with

(φ(u′))′ + g(u) = 0.

In this case, estimates for the time-mappings are already done in [15, 20, 22, 24]
and could be fruitfully exploited to extend Theorem 3.1 as well as Theorem 4.1
and Theorem 4.2 to the case of more general differential operators, such as
p-Laplacians or φ-Laplacians.
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6. Appendix

In this section we provide a local existence result for the initial value problem
associated with equation (

p(t)φ(u′)
)′
+ q(t)g(u) = 0. (6.1)

We assume that φ : R → R is an increasing homeomorphism with φ(0) = 0 and
g : R → R is continuous function. For the weight functions, we suppose that
p : [0, R] → R is continuous and positive on ]0, R] and q ∈ L1([0, R]).

We are interested to find solutions of (6.1) satisfying the initial condition

u(0) = d, u′(0) = 0. (6.2)

By a local solution of (6.1)-(6.2) we mean a function u(t) defined on a interval
[0, δ] ⊆ [0, R] for some δ > 0 with u ∈ C1([0, δ]), p(t)φ(u′(t)) absolutely con-
tinuous on [0, δ] and satisfying equation (6.1) for a.e. t, as well as the initial
condition (6.2). If δ = R we say that the solution is globally defined.

Proposition 6.1. Suppose that

lim
t→0+

∫ t

0
|q(s)| ds
p(t)

= 0. (6.3)

Then, for every b ∈ R there is at least a local solution of (6.1)-(6.2).

Proof. Let us fix a constant δ ∈ ]0, R] and consider the operator H defined by

H (u)(t) := b+

∫ t

0

φ−1

(
− 1

p(s)

∫ s

0

q(ξ)g(u(ξ)) dξ

)
ds

and acting on the Banach space C([0, δ]) endowed with the sup-norm. For
every u ∈ C([0, δ]) it holds that the function z(t) := 1

p(s)

∫ s

0
q(ξ)g(u(ξ)) dξ is

continuous on ]0, δ] and, thanks to condition (6.3), can be continuously extended
to t = 0, by setting z(0) = 0. Hence H : C([0, δ]) → C1([0, δ]). Moreover,
H : C([0, δ]) → C0([0, δ]) is completely continuous. Via standard estimates,
one can easily prove that for δ > 0 sufficiently small H maps the closed unit
ball around b, namely B[b, 1] := {u ∈ C0([0, δ]) : ‖u(·)−b‖∞ ≤ 1} to itself. The
Schauder theorem guarantees the existence of a fixed point ũ for H which is a
local solution of (6.1)-(6.2).

In the special case φ(s) = s for all s ∈ R and g(·) locally Lipschitz continuous,
one can apply the contraction mapping principle to prove the (local) uniqueness
of the solution.

Proposition 6.1 applies to the initial value problem associated to the equation
(4.6) or to the equation in (4.5) and, therefore, to system (4.7), where φ(s) = s.
A similar result is already given in [22]. See also [14] and the references therein
for general results involving the initial value problems for φ-Laplacian type
differential operators.
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