This paper analyzes the quasilinear elliptic boundary value problem driven by the mean curvature operator −div∇u∕1+|∇u|2=λa(x)f(u)inΩ,u=0on∂Ω,with the aim of understanding the effects of a flux-saturated diffusion in logistic growth models featuring spatial heterogeneities. Here, Ω is a bounded domain in RN with a regular boundary ∂Ω, λ>0 represents a diffusivity parameter, a is a continuous weight which may change sign in Ω, and f:[0,L]→R, with L>0 a given constant, is a continuous function satisfying f(0)=f(L)=0 and f(s)>0 for every s∈]0,L[. Depending on the behavior of f at zero, three qualitatively different bifurcation diagrams appear by varying λ. Typically, the solutions we find are regular as long as λ is small, while as a consequence of the saturation of the flux they may develop singularities when λ becomes larger. A rather unexpected multiplicity phenomenon is also detected, even for the simplest logistic model, f(s)=s(L−s) and a≡1, having no similarity with the case of linear diffusion based on the Fick–Fourier's law.

Positive solutions of indefinite logistic growth models with flux-saturated diffusion / Omari, P.; Sovrano, E.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 201:(2020), pp. 111949-111949. [10.1016/j.na.2020.111949]

Positive solutions of indefinite logistic growth models with flux-saturated diffusion

Sovrano E.
2020

Abstract

This paper analyzes the quasilinear elliptic boundary value problem driven by the mean curvature operator −div∇u∕1+|∇u|2=λa(x)f(u)inΩ,u=0on∂Ω,with the aim of understanding the effects of a flux-saturated diffusion in logistic growth models featuring spatial heterogeneities. Here, Ω is a bounded domain in RN with a regular boundary ∂Ω, λ>0 represents a diffusivity parameter, a is a continuous weight which may change sign in Ω, and f:[0,L]→R, with L>0 a given constant, is a continuous function satisfying f(0)=f(L)=0 and f(s)>0 for every s∈]0,L[. Depending on the behavior of f at zero, three qualitatively different bifurcation diagrams appear by varying λ. Typically, the solutions we find are regular as long as λ is small, while as a consequence of the saturation of the flux they may develop singularities when λ becomes larger. A rather unexpected multiplicity phenomenon is also detected, even for the simplest logistic model, f(s)=s(L−s) and a≡1, having no similarity with the case of linear diffusion based on the Fick–Fourier's law.
2020
201
111949
111949
Positive solutions of indefinite logistic growth models with flux-saturated diffusion / Omari, P.; Sovrano, E.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 201:(2020), pp. 111949-111949. [10.1016/j.na.2020.111949]
Omari, P.; Sovrano, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1262550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact