We study the regularity properties of the second order linear degenerate parabolic operators. We prove that, if the operator Lsatisfies Hörmander’s hypoellipticity condition, and f is a Dini continuous function, then the second order derivatives of the solution u to the equation L u = f are Dini continuous functions as well. We also consider the case of Dini continuous coefficients of the secondo order derivatives. A key step in our proof is a Taylor formula for classical solutions to L u = f that we establish under minimal regularity assumptions on u.
Schauder type estimates for degenerate Kolmogorov equations with Dini continuous coefficients / Polidoro, Sergio; Rebucci, Annalaura; Stroffolini, Bianca. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - 21:4(2022), pp. 1385-1416. [10.3934/cpaa.2022023]
Schauder type estimates for degenerate Kolmogorov equations with Dini continuous coefficients
Polidoro, SergioMembro del Collaboration Group
;
2022
Abstract
We study the regularity properties of the second order linear degenerate parabolic operators. We prove that, if the operator Lsatisfies Hörmander’s hypoellipticity condition, and f is a Dini continuous function, then the second order derivatives of the solution u to the equation L u = f are Dini continuous functions as well. We also consider the case of Dini continuous coefficients of the secondo order derivatives. A key step in our proof is a Taylor formula for classical solutions to L u = f that we establish under minimal regularity assumptions on u.File | Dimensione | Formato | |
---|---|---|---|
PRS.pdf
Open access
Descrizione: Preprint
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
399.62 kB
Formato
Adobe PDF
|
399.62 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris