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Schauder type estimates for degenerate
Kolmogorov equations with Dini

continuous coefficients

Sergio Polidoro∗ Annalaura Rebucci†

Bianca Stroffolini ‡

Abstract
We study the regularity properties of the second order linear operator in RN+1:

L u :=
m∑

j,k=1

ajk∂
2
xjxk

u +
N∑

j,k=1

bjkxk∂xju− ∂tu,

where A = (ajk)j,k=1,...,m , B = (bjk)j,k=1,...,N are real valued matrices with con-
stant coefficients, with A symmetric and strictly positive. We prove that, if
the operator L satisfies Hörmander’s hypoellipticity condition, and f is a Dini
continuous function, then the second order derivatives of the solution u to the
equation L u = f are Dini continuous functions as well. We also consider the
case of Dini continuous coefficients ajk’s. A key step in our proof is a Taylor for-
mula for classical solutions to L u = f that we establish under minimal regularity
assumptions on u.
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1 Introduction

We consider second order linear differential operators of the form

L :=
m∑

i,j=1

aij∂
2
xixj

+
N∑

i,j=1

bijxj∂xi − ∂t, (1.1)
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where (x, t) ∈ RN+1, and 1 ≤ m ≤ N . The matrices A := (aij)i,j=1,...,m and B :=
(bij)i,j=1,...,N have real constant entries. The first order part of the operator L will be
denoted by Y

Y :=
N∑

i,j=1

bijxj∂xi − ∂t = 〈Bx,D〉 − ∂t, (1.2)

and Y u will be understood as the Lie derivative

Y u(x, t) := lim
s→0

u(exp(sB)x, t− s)− u(x, t)

s
. (1.3)

Note that Y u is the derivative of u along the characteristic trajectory of Y , if we
identify the directional derivative Y with the vector valued function Y (x, t) = (Bx,−1).
The standing assumption of this article is:

[H.1] The matrix A is symmetric and strictly positive, the matrix B has the form

B =


B0,0 B0,1 . . . B0,κ−1 B0,κ

B1 B1,1 . . . B1,κ−1 B1,κ

O B2 . . . B2,κ−1 B2,κ
...

...
. . .

...
...

O O . . . Bκ Bκ,κ

 =


∗ ∗ . . . ∗ ∗
B1 ∗ . . . ∗ ∗
O B2 . . . ∗ ∗
...

...
. . .

...
...

O O . . . Bκ ∗

 (1.4)

where every block Bj is an mj×mj−1 matrix of rank mj with j = 1, 2, . . . , κ. Moreover,
the mjs are positive integers such that

m0 ≥ m1 ≥ . . . ≥ mκ ≥ 1, and m0 +m1 + . . .+mκ = N. (1.5)

We agree to let m0 := m to have a consistent notation, moreover O denotes a block
matrix whose entries are zeros, whereas the coefficients of the blocks “∗” are arbitrary.
Note that we allow the operator L to be strongly degenerate, when m < N . How-
ever, the assumption [H.1] implies that the first order part Y of L induces a strong
regularity property. Indeed, it is known that L is hypoelliptic, namely that every
distributional solution u to L u = f defined in some open set Ω ⊂ RN+1 belongs to
C∞(Ω), and is a classical solution to L u = f , whenever f ∈ C∞(Ω). In Section 2 we
will recall several known results about the operators L that will be used in the sequel.

The interest in degenerate operators in the form L arises in several research ar-
eas. Consider for instance the operator introduced by Kolmogorov in [12], defined for
(x, t) = (v, y, t) ∈ Rm × Rm × R as follows

K :=
m∑
j=1

∂2
xj
−

m∑
j=1

xj∂xm+j
− ∂t = ∆v − 〈v,Dy〉 − ∂t. (1.6)

The operator K can be written in the form (1.1) with κ = 1,m1 = m, and

B =

(
O O
−Im O

)
(1.7)
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where Im denotes the m×m identity matrix. It appears in kinetic theory as a proto-
type of the Boltzmann–Landau equation, describing the density f = f(v, y, t) having
position y and velocity v at time t. We refer to the recent survey article [11] by Imbert
and Silvestre, and to its bibliography. Equations of the form [12] arise in mathematical
finance as well. Specifically, the following linear equation

S2∂SSV + log(S)∂AV + ∂tV = 0, (S,A, t) ∈ R+ × R×]0, T [

appears in the Black & Scholes theory when considering the problem of the pricing
of geometric average asian options, and takes the form [12] as we change the variable
(S,A, t) = (ex, y, T − t). For the applications of operators in the form L to the finance
and to the stochastic theory we refer to the monograph [21] by Pascucci.

In this article we study the local regularity of the classical solution u to L u = f
when f is Dini continuous. For this reason we require as few conditions as possible for
the definition of L u.

Definition 1.1. Let Ω be an open subset of RN+1. We say that a function u belongs
to C2

L (Ω) if u, its derivatives ∂xiu, ∂xixju (i, j = 1, . . . ,m) and the Lie derivative Y u
defined in (1.3) are continuous functions in Ω. We also require, for i = 1, . . . ,m, that

lim
s→0

∂xiu(exp(sB)x, t− s)− ∂xiu(x, t)

|s|1/2
= 0, (1.8)

uniformly for every (x, t) ∈ K, where K is a compact set K ⊂ Ω.
Let f be a continuous function defined in Ω. We say that a function u is a classical

solution to L u = f in Ω if u belongs to C2
L (Ω), and the equation L u = f is satisfied

at every point of Ω.

Note that, as L is a linear second order differential operator, it is natural to
consider Y as a second order derivative, and (1.8) can be interpreted as a condition
on the second order mixed derivative of the form Y 1/2∂xiu. Indeed, if the derivative

Y ∂xiu exists, then the fractional derivative Y ∂
1/2
xi u is equal to 0. Thus, condition (1.8)

is not demanding and it is the weakest assumption we need in order to prove that u is
approximated by its intrinsic Taylor polynomial of degree 2 (see Theorem 1.3 below).

Our main result is the local regularity of the classical solution u to L u = f when f
is Dini continuous. In order to define a modulus of continuity which is suitable for the
operator L we recall the Lie group structure K = (RN+1, ◦) introduced by Lanconelli
and Polidoro in [13], and some related notation. In Section 2 we will explain its
connection with L . We let

E(t) := exp(−tB), (1.9)

and we define

K = (RN+1, ◦), (x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t+ τ), (x, t), (ξ, τ) ∈ RN+1. (1.10)
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Then K is a non-commutative group with zero element (0, 0) and inverse

(x, t)−1 = (−E(−t)x,−t).

In [13] it is proved that the operator L is invariant with respect to a family of dilations
(δr)r>0 if, and only if, the matrix B in (1.4) agrees with B0 defined as:

B0 =


O O . . . O O
B1 O . . . O O
O B2 . . . O O
...

...
. . .

...
...

O O . . . Bκ O

 (1.11)

In other words, every block denoted by ∗ in (1.4) has zero entries. In this case the
dilation is defined for every positive r as

δr := diag(rIm, r
3Im1 , . . . , r

2κ+1Imκ , r
2), (1.12)

where Ik, k ∈ N, is the k-dimensional unit matrix.
In the sequel we let L0 be the operator obtained from L by replacing its matrix B

with B0 defined in (1.11), and we base our blow-up argument on the family of dilations
(δr)r>0. Hence we take advantage of the invariant structure of L0 in the study of the
regularity of L . This fact is quite natural as L0 is the blow-up limit of L , as it is
shown in Section 2.2 of [1].

We now introduce a homogeneous semi-norm of degree 1 with respect to the family
of dilations (δr)r>0 in (1.12) and a quasi-distance which is invariant with respect to the
group operation in (1.10). We first rewrite the matrix δr with the equivalent notation

δr := diag(rα1 , . . . , rαN , r2), (1.13)

where α1, . . . , αm0 = 1, αm0+1, . . . , αm0+m1 = 3, αN−mκ , . . . , αN = 2κ+ 1.

Definition 1.2. For every (x, t) ∈ RN+1 we set

‖(x, t)‖K := max
{
|x1|

1
α1 , . . . , |xN |

1
αN , |t|

1
2

}
. (1.14)

Note that the semi-norm is homogeneous of degree 1 with respect to the family of
dilations (δr)r>0, namely ‖δr(x, t)‖K = r‖(x, t)‖K for every r > 0 and (x, t) ∈ RN+1.
Moreover, the following pseudo-triangular inequality holds: for every bounded set H ⊂
RN+1 there exists a positive constant cH such that

‖(x, t)−1‖K ≤ cH‖(x, t)‖K , ‖(x, t) ◦ (ξ, τ)‖K ≤ cH(‖(x, t)‖K + ‖(ξ, τ)‖K), (1.15)

for every (x, t), (ξ, τ) ∈ H. We then define the quasi-distance dK by setting

dK((x, t), (ξ, τ)) := ‖(ξ, τ)−1 ◦ (x, t)‖K , (x, t), (ξ, τ) ∈ RN+1, (1.16)
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and the ball
Qr(x0, t0) := {(x, t) ∈ RN+1 | dK((x, t), (x0, t0)) < r}. (1.17)

Note that from (1.15) it directly follows

dK((x, t), (ξ, τ)) ≤ cH(dK((x, t), (y, s)) + dK((y, s), (ξ, τ))),

for every (x, t), (ξ, τ), (y, s) ∈ RN+1.
We are now in a position to state our result concerning the intrinsic second order

Taylor polynomial. We recall that the nth-order intrinsic Taylor polynomial of a func-
tion u around the point z is defined as the unique polynomial function P n

z u of order n
such that

u(ζ)− P n
z u(ζ) = o(dK(ζ, z)n) as ζ → z,

where dK denotes the quasi-distance defined in (1.16).

Theorem 1.3. Let L be an operator in the form (1.1) satisfying hypothesis [H.1]. Let
Ω be an open subset of RN+1 and let u be a function in C2

L (Ω). For every z := (x, t) ∈ Ω
we define the second order Taylor polynomial of u around z as

T 2
z u(ζ) := u(z) +

m∑
i=1

∂xiu(z)(ξi − xi)

+
1

2

m∑
i,j=1

∂2
xixj

u(z)(ξi − xi)(ξj − xj)− Y u(z)(τ − t),
(1.18)

for any ζ = (ξ, τ) ∈ Ω. Indeed, we have

u(ζ)− T 2
z u(ζ) = o(dK(ζ, z)2) as ζ → z. (1.19)

Remark 1.4. We compare Theorem 1.3 with the existing literature. We specifically
refer to the results proved by Pagliarani, Pascucci and Pignotti in [19, 20, 22]. The
authors of the above mentioned papers consider a suitable funtion space Cn,α

B (Ω), with
n non negative integer and α ∈ (0, 1], and prove that

u(ζ)− T nz u(ζ) = O(dK(ζ, z)n+α) as ζ → z. (1.20)

In order to compare this assertion with (1.19) we need to consider the case n+ α = 2.
Note that the above articles do not cover the case n = 2 and α = 0, while they cover
n = 1 and α = 1. Thus, their main results apply to the space C1,1

B (Ω) of the functions u
that have Lipschitz continuous first order derivatives ∂x1u, . . . , ∂xmu along the directions
x1, . . . , xm and satisfy

∂xiu(exp(sB)x, t− s)− ∂xiu(x, t) = O(|s|1/2), as s→ 0, (1.21)
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for every (x, t) ∈ Ω and i = 1, . . . ,m. Moreover the functions u are Lipschitz continu-
ous along the direction of the vector field Y . In this setting (1.20) reads as follows

u(ζ)− T 1
z u(ζ) = O(dK(ζ, z)2) as ζ → z.

We emphasize that the assumption u ∈ C1,1
B (Ω) does not imply the existence of the

second order derivatives of u, then C1,1
B (Ω) differs substiantially from our space C2

L (Ω).
For this reason, the proof of Theorem 1.3 requires slightly different arguments and the
additional condition (1.8), which is slightly stronger than (1.21).

In order to state the upcoming result Theorem 1.6, we define the modulus of con-
tinuity of a function f defined on any set H ⊂ RN+1 as follows

ωf (r) := sup
(x,t),(ξ,τ)∈H

dK((x,t),(ξ,τ))<r

|f(x, t)− f(ξ, τ)|. (1.22)

Definition 1.5. A function f is said to be Dini-continuous in H if∫ 1

0

ωf (r)

r
dr < +∞.

We are now in position to state our main result.

Theorem 1.6. Let L be an operator in the form (1.1) satisfying hypothesis [H.1]. Let
u ∈ C2

L (Q1(0, 0)) be a classical solution to L u = f . Suppose that f is Dini continuous.
Then there exists a positive constant c, only depending on the operator L , such that:

i)

|∂2u(0, 0)| ≤ c

(
sup
Q1(0,0)

|u|+ |f(0, 0)|+
∫ 1

0

ωf (r)

r
dr

)
;

ii) for any points (x, t) and (ξ, τ) ∈ Q 1
4
(0, 0) we have

|∂2u(x, t)−∂2u(ξ, τ)| ≤ c

(
d sup
Q1(0,0)

|u|+ d sup
Q1(0,0)

|f |+
∫ d

0

ωf (r)

r
dr + d

∫ 1

d

ωf (r)

r2
dr

)
.

where d := dK((x, t), (ξ, τ)) and ∂2 stands either for ∂2
xixj

, with i, j = 1, . . . ,m,
or for Y .

We emphasize that Theorem 1.6 fails even in the simplest Euclidean setting if we
do not assume any regularity condition on the function f . Consider for instance the
function

u(x, y) = xy(log(x2 + y2))α, with 0 < α < 1.
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A direct computation shows that

∆u(x, y) = 8α
xy

x2 + y2
(log(x2 + y2))α−1 + 4α(α− 1)

xy

x2 + y2
(log(x2 + y2))α−2,

so that f(x, y) := ∆u(x, y) extends to a continuous function on R2, which is not
Dini continuous at the point (0, 0). On the other hand, the derivative ∂x∂yu(x, y) is
unbounded near the origin. We also point out that, when α = 1, the function u is a
counterexample for the L∞ bounds of the second order derivatives of weak solutions
to ∆u = f . 1

We finally consider the non-constant coefficients operator L̃ defined as follows

L̃ :=
m∑

i,j=1

aij(x, t)∂
2
xixj

+
N∑

i,j=1

bijxj∂xi − ∂t. (1.23)

We assume that the coefficients aij are Dini continuous functions and, in order to
simplify the notation, we write

ωa(r) := max
i,j=1,...,m

sup
(x,t),(ξ,τ)∈H

dK((x,t),(ξ,τ))<r

|aij(x, t)− aij(ξ, τ)|. (1.24)

We assume that the following condition on the matrix A(x, t) := (aij(x, t))i,j=1,...,m is
satisfied.

[H.2] For every (x, t) ∈ RN+1, the matrix A(x, t) is symmetric and satisfies

λ|ξ|2 ≤ 〈A(x, t)ξ, ξ〉 ≤ Λ|ξ|2, for every ξ ∈ Rm, (1.25)

for some positive constants λ,Λ.

Theorem 1.7. Let L̃ be an operator in the form (1.23) satisfying the hypotheses [H.1]

and [H.2]. Let u ∈ C2
L (Q1(0, 0)) be a classical solution to L̃ u = f . Suppose that f

and the coefficients aij, i, j = 1, . . . ,m, are Dini continuous. Then for any points (x, t)
and (ξ, τ) ∈ Q 1

2
(0, 0) the following holds:

|∂2u(x, t)− ∂2u(ξ, τ)| ≤c
(
d sup
Q1(0,0)

|u|+ d sup
Q1(0,0)

|f |+
∫ d

0

ωf (r)

r
dr + d

∫ 1

d

ωf (r)

r2
dr
)

+c

( m∑
i,j=1

sup
Q1(0,0)

| ∂2
xixj

u|
)(∫ d

0

ωa(r)

r
dr + d

∫ 1

d

ωa(r)

r2
dr
)
.

where d = dK((x, t), (ξ, τ)) and ∂2 stands either for ∂2
xixj

,i, j = 1, . . . ,m, or for Y .

1We acknowledge that this counterexample was pointed out to one of the authors by Andreas
Minne during the Workshop “New trends in PDEs”, held in Catania on 29-30 May 2018.
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We now compare our main findings with the current literature on this subject. We
first consider functions f defined on H ⊂ RN+1 that are Hölder continuous with respect
to the distance (1.16), that is

|f(x, t)− f(ξ, τ)| ≤M dK((x, t), (ξ, τ))α, for every (x, t), (ξ, τ) ∈ H, (1.26)

for some constants M > 0 and α ∈]0, 1]. In this case we say that f ∈ C0,α
L (H) and we

let
‖f‖C0,α

L (H) = sup
H
|f |+ inf

{
M ≥ 0 | (1.26) holds

}
.

When α < 1 we write Cα
L(H) instead of C0,α

L (H). As a direct consequence of Theorem
1.7 we have

Corollary 1.8. Let u ∈ C2
L (Q1(0, 0)) be a classical solution to L̃ u = f . Suppose that

f and the coefficients aij, i, j = 1, . . . ,m, belong to C0,α
L (Q1(0, 0)). Then for any points

(x, t) and (ξ, τ) ∈ Q 1
2
(0, 0) the following holds:

|∂2u(x, t)− ∂2u(ξ, τ)| ≤c dα
(

sup
Q1(0,0)

|u|+
‖f‖CαL(Q1(0,0))

α(1− α)

+
m∑

i,j=1

sup
Q1(0,0)

| ∂2
xixj

u|
‖a‖CαL(Q1(0,0))

α(1− α)

)
, if α < 1,

|∂2u(x, t)− ∂2u(ξ, τ)| ≤c d
(

sup
Q1(0,0)

|u|+ ‖f‖C0,1
L (Q1(0,0))| log d|

+

( m∑
i,j=1

sup
Q1(0,0)

| ∂2
xixj

u|
)
‖a‖C0,1

L (Q1(0,0))| log d|
)
, if α = 1.

Note that, for α < 1, Corollary 1.8 restores the Schauder estimates previously
proved by Manfredini in [16], and by Di Francesco and Polidoro in [6]. Note that,
in this case, an interpolation inequality allows us to state a bound for the Cα

L norm
of the derivatives ∂2u in terms of ‖a‖CαL(Q1(0,0)), ‖f‖CαL(Q1(0,0)), and supQ1(0,0) |u| only.
We also recall that Schauder estimates in the framework of semigroups have been
proved by Lunardi [15], Lorenzi [14], Priola [23]. Theorems 1.6 and 1.7 improve the
previous ones, not only because we weaken the regularity assumption on f and on the
coefficients aij’s, but also because the Schauder estimate for α = 1 is not given in the
aforementioned articles. We also quote analogous results obtained in the framework of
stochastic theory (see Menozzi [17] and its bibliography).

The proof of our main results is based on the method introduced by Wang [25] in the
study of the Poisson equation, which greatly simplifies the other approaches previously
used in literature. Wang considers in [25] a solution u to the equation ∆u = f in
some open set Ω. Without loss of generality, he assumes that the unit ball B1(0) is
contained in Ω and considers a sequence of Dirichlet problems as follows. Let Brk(0)
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be the Euclidean ball centered at the origin and of radius rk = 1
2k

, and let uk be the
solution to the Dirichlet problem

∆uk = f(0), in Brk(0), uk = u in ∂Brk(0).

Quantitative information on the derivatives of every solution uk is obtained by using
only the elementary properties of the Laplace equation, namely the weak maximum
principle, and the standard apriori estimates of the derivatives, that are obtained in
[25] via mean value formulas. The bounds for the derivatives of u are obtained as the
limit of the analogous bounds for uk. The Taylor expansion in this step is crucial to
conclude the proof.

In this work we apply the method described above to degenerate Kolmogorov op-
erators L , by adapting Wang’s approach to the non-Euclidean structure defined in
(1.10). In particular, the ball Brk(0) is replaced by the box Qrk(0, 0) defined through
the dilation δrk introduced in (1.12). Concerning the Taylor expansion, we recall the
results due to Bonfiglioli [4] and the ones proved by Pagliarani, Pascucci and Pignotti
[19]. We emphasize that the authors of the above articles assume that the second
order derivatives of the function u are Hölder continuous, while we only require that
u belongs to the space C2

L (Ω) introduced in Definition 1.1. As the regularity of the
second order derivatives of u is the very subject of this note, we do not assume extra
conditions on them and we prove in Proposition 1.3 the Taylor approximation under
the minimal requirement that u ∈ C2

L (Ω).

We conclude this introduction with a short discussion about the applicative and
theoretical interest in the operator K defined in (1.6), that is

K :=
m∑
j=1

∂2
xj
−

m∑
j=1

xj∂xm+j
− ∂t = ∆v − 〈v,Dy〉 − ∂t.

Recall that it appears in kinetic theory, and describes the density f = f(v, y, t) of
particles that have velocity v and position y at time t. In this setting, the Lie group
has a quite natural intepretation. Indeed the composition law (1.10) agrees with the
Galilean change of variables

(v, y, t) ◦ (v0, y0, t0) = (v0 + v, y0 + y + tv0, t0 + t), (v, y, t), (v0, y0, t0) ∈ R2m+1.

It is easy to see that K is invariant with respect to the above change of variables.
Specifically, if w(v, y, t) = u(v0 + v, y0 + y + tv0, t0 + t) and g(v, y, t) = f(v0 + v, y0 +
y + tv0, t0 + t), then

K u = f ⇐⇒ K w = g for every (v0, y0, t0) ∈ R2m+1.

As the matrix B in (1.7) is in the form (1.11), K is invariant with respect to the di-
latation δr(v, y, t) := (rv, r3y, r2t). Note that the dilatation acts as the usual parabolic
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scaling with respect to the variable v and t. The term r3 in front of y is due to the
fact that the velocity v is the derivative of the position y with respect to time t. For a
more exhaustive description of the operator L , and of its applications, we refer to the
survey article [1] by Anceschi and Polidoro and to its bibliography.

After the work of Kolmogorov [12] where (1.6) was introduced, and Hörmander’s
celebrated article [10] on the hypoellipticity of second order degenerate linear opera-
tors, the regularity theory for operators that are invariant with respect to a Lie group
structure has been widely developed by many authors. We quote here the seminal
works by Folland [7], Folland and Stein [8], Rotschild and Stein [24], Nagel, Stein and
Wainger [18]. We also refer to the monograph by Bonfiglioli, Lanconelli and Uguzzoni
[3] that contains an updated description of this theory. Wei, Jiang, and Wu adapt in
[26] the method introduced by Wang [25] and prove Schauder estimates for hypoellip-
tic degenerate operators on the Heisenberg group. The Taylor formula used in [26] is
proved by Arena, Caruso and Causa in [2]. In a different framework, Wang’s method
has been used by Bucur and Karakhanyan [5] in the study of fractional operators.

This paper is structured as follows. In Section 2, we recall the basic facts about the
analysis on Lie groups we need in our treatment. It also contains some properties about
the fundamental solution of the operator L . In Section 3 we prove some preliminary
results. In particular, we obtain some a priori estimates of the derivatives of the
solutions u to L u = 0 in terms of the L∞ norm of u. In Section 4 we prove our main
result on the Taylor approximation of any function u ∈ C2

L (Ω). Section 5 contains the
proof of Theorem 1.6, while Section 6 contains the proof of Theorem 1.7.

2 Lie Group Invariance and Fundamental Solution

Here we discuss the invariance properties of Kolmogorov operators with respect to the
Lie Group structure K = (RN+1, ◦) introduced in (1.10). Moreover, we recall some
known results concerning the fundamental solution of L .

We first introduce some further notation. As the constant matrix A is symmetric
and positive, there exists a symmetric and positive matrix A1/2 = (aij)i,j=1,...,m such

that A = A1/2A1/2. In order to check the hypothesis [H.1], we write L in terms of
vector fields as follows

L =
m∑
i=1

X2
i + Y,

where

Xi :=
m∑
j=1

aij∂xj , i = 1, . . . ,m, Y := 〈Bx,D〉 − ∂t, (2.1)

We recall that assumption [H.1] is implied by Hörmander’s condition (see [10]):

rank Lie (X1, . . . , Xm, Y ) (x, t) = N + 1, ∀ (x, t) ∈ RN+1. (2.2)
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Yet another condition, equivalent to [H.1], (see [13]), is that

C(t) > 0, for every t > 0,

where

C(t) =

∫ t

0

E(s)

(
A O
O O

)
ET (s) ds.

We now recall that, under the the hypothesis of hypoellipticity, Hörmander con-
structed the fundamental solution of L as

Γ(x, t, ξ, τ) = Γ(x− E(t− τ)ξ, t− τ),

where Γ(x, t) = Γ(x, t, 0, 0) and Γ(x, t) = 0 for every t ≤ 0, while

Γ(x, t) =
(4π)−

N
2√

detC(t)
exp
(
− 1

4
〈C−1(t)x, x〉 − t tr(B)

)
, t > 0.

As a fundamental solution to L , the following representation formula holds true: for
every u ∈ C∞0 (RN+1) we have

u(z) = −
∫
RN+1

[Γ(z, ·)L (u)](ζ)dζ. (2.3)

Here and in the sequel z = (x, t) and ζ = (ξ, τ) denote points of RN+1.

We now conclude the analysis of the Lie Group K, providing tools that will be very
useful to prove our main results. We adopt the notation of [13] and we quote the results
therein. For a given ζ ∈ RN+1, we denote by `ζ the left translation on K = (RN+1, ◦)
defined as follows

`ζ : RN+1 → RN+1, `ζ(z) = ζ ◦ z.

Then the vector fields X1, . . . , Xm and Y are left-invariant, with respect to the group
law (1.10), in the sense that

Xj (u(ζ ◦ · )) = (Xju) (ζ ◦ · ), j = 1, . . . ,m, Y (u(ζ ◦ · )) = (Y u) (ζ ◦ · ), (2.4)

for every ζ ∈ RN+1 and every u sufficiently smooth. Hence, in particular,

L ◦ `ζ = `ζ ◦L or, equivalently, L (u(ζ ◦ · )) = (L u) (ζ ◦ · ).

Regarding the invariance with respect to the dilation introduced in (1.12), we recall
that the operator L0, obtained from L by replacing its matrix B with B0 in (1.11),
satisfies

L0 (u ◦ δr) = r2δr (L0u) , for every r > 0, (2.5)
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for every function u sufficiently smooth (see Proposition 2.2 in [13]). In this case, we
say that K =

(
RN+1, ◦, (δr)r>0

)
is a homogeneous Lie group, and we have

δr (z ◦ ζ) = (δrz) ◦ (δrζ) , for every z, ζ ∈ RN+1 and r > 0.

As we rely on a blow-up argument, we also apply the dilation (1.12) to the general
operator L satisfying [H.1]. Specifically, we define Lr as the scaled operator of L in
terms of (δr)r>0 as follows

Lr := r2(δr ◦L ◦ δ 1
r
), (2.6)

and we write its explicit expression in terms of the matrix B and (δr) as

Lr =
m∑

i,j=1

aij∂
2
xixj

+ Yr, r ∈ (0, 1] (2.7)

where
Yr := 〈Brx,D〉 − ∂t (2.8)

and Br := r2δrBδ 1
r
, i.e.,

Br =


r2B0,0 r4B0,1 . . . r2κB0,κ−1 r2κ+2B0,κ

B1 r2B1,1 . . . r2κ−2B1,κ−1 r2κB1,κ

O B2 . . . r2κ−4B2,κ−1 r2κ−2B2,κ
...

...
. . .

...
...

O O . . . Bκ r2Bκ,κ

 . (2.9)

Clearly, Lr = L for every r > 0 if and only if B = B0, and the principal part operator
L0 is obtained as the limit of (2.6) as r → 0.

Setting Er(t) = exp(−tBr), we define the translation group related to Lr as

(x, t) ◦r (ξ, τ) = (ξ + Er(τ)x, t+ τ), (x, t), (ξ, τ) ∈ RN+1. (2.10)

Remark 2.1. As it will be useful in the blow-up limit procedure, we point out that the
composition law defined in (2.10) depends continuously on r ∈ (0, 1]. Moreover, taking
r = 0 in (2.9) we find the matrix B0 and “ ◦r” in (2.10) simply becomes the composition
law related to the dilation-invariant operator L0. Thus, “ ◦r” is a continuous function
on the compact set [0, 1].

The homogeneous dimension of RN+1 with respect to (δr)r>0 is the integer Q + 2,
where Q is the so called spatial homogeneous dimension of RN+1

Q := m+ 3m1 + . . .+ (2κ+ 1)mκ. (2.11)

We observe that the following equation holds true

det δr = rQ+2 for every r > 0.

12



We now recall the notion of homogeneous function in a homogeneous group. We
say that a function u defined on RN+1 is homogeneous of degree α ∈ R if

u(δr(z)) = rαu(z) for every z ∈ RN+1.

A differential operator X will be called homogeneous of degree β ∈ R with respect to
(δr)r≥0 if

Xu(δr(z)) = rβ (Xu) (δr(z)) for every z ∈ RN+1,

and for every sufficiently smooth function u. Note that, if u is homogeneous of degree
α and X is homogeneous of degree β, then Xu is homogeneous of degree α− β.

As far as we are concerned with the vector fields of the Kolmogorov operator L0

under the invariance assumption (2.5), we have that X1, . . . , Xm are homogeneous of
degree 1 and Y is homogeneous of degree 2 with respect to (δr)r≥0. In particular,
L0 =

∑m
j=1 X

2
j + Y is homogeneous of degree 2, and its fundamental solution Γ0 is a

homogeneous function of degree −Q. As a direct consequence, the estimate Γ0(z, ζ) ≤
c

‖ζ−1◦z‖QK
holds for every z, ζ ∈ RN+1, with z 6= ζ. Analogous bounds hold for the first

order and second order derivatives of Γ0, as they are homogeneous of degree −Q − 1
and −Q− 2, respectively.

In the sequel, as we also consider the non dilation-invariant operator L , we rely
on the following estimates (see Proposition 2.7 in [6]). Let z0 ∈ RN+1 and R0 > 0
be a given point and a given constant. Assume that all the eigenvalues of the matrix
A belong to some interval [λ,Λ] ⊂ R+. Then there exists a positive constant c, only
depending on λ,Λ and on the matrix B, such that the following bounds hold

Γ(z, ζ) ≤ c

‖ζ−1 ◦ z‖QK
,

|∂xjΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+1
K

, |∂ξjΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+1
K

,

|∂xixjΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+2
K

, |∂ξiξjΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+2
K

,

|Y Γ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+2
K

, |Y ∗Γ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+2
K

,

(2.12)

for every i, j = 1, . . . ,m, z, ζ ∈ QR0(z0) with z 6= ζ. Here Y ∗ denotes the transposed
operator of Y , defined as follows∫

RN+1

φ(x, t)Y ∗ψ(x, t) dxdt =

∫
RN+1

ψ(x, t)Y φ(x, t) dxdt,

for every ψ, φ ∈ C∞0 (RN+1).
A similar result holds for the derivatives ∂xjΓ(z, ζ) and ∂ξjΓ(z, ζ) for j = m +

1, . . . , N . These functions need to be considered as derivatives of order αj, where the
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integer αj has been introduced in (1.13). We have

|∂xjΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+αj
K

, |∂ξkΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+αk
K

,

|∂xj∂ξkΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+αj+αk
K

,
(2.13)

for every j, k = 1, . . . , N , z, ζ ∈ QR0(z0) with z 6= ζ. Note that, as α1 = · · · = αm = 1,
the bounds in the first line of (2.13) agree with the second line of (2.12). The proof of
(2.13) directly follows from the bound (2.59) and (2.60) in [6].

We conclude this Section with the following corollary of the estimates (2.12) and
(2.13), which will be useful in the sequel.

Lemma 2.2. Assume that all the eigenvalues of the matrix A belong to some interval
[λ,Λ] ⊂ R+. Then there exist two positive constants C, only depending on λ,Λ and on
the matrix B, such that the following holds true. For every R ∈]0, 1] we have that

sup
{

Γ(z, ζ) : z ∈ QR
2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤ C

RQ
. (2.14)

Moreover

sup
{∣∣∂xj∂ξkΓ(z, ζ)

∣∣ : z ∈ QR
2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤ C

RQ+αj+αk
. (2.15)

and

sup
{
|Y ∂ξkΓ(z, ζ)| : z ∈ QR

2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤ C

RQ+2+αk
. (2.16)

for every j, k = 1, . . . , N .

Proof. We first choose R0 > 0 such that ‖ζ−1 ◦ z‖K ≤ R0 whenever z ∈ Q 1
2
(0), and

ζ ∈ Q1(0). The existence of such a positive number follows from the pseudo-triangular
inequality (1.15). With this choice of R0, we apply (2.12), and we find

sup
{

Γ(z, ζ) : z ∈ QR
2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤

c
(

inf
{
‖ζ−1 ◦ z‖K : z ∈ QR

2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
})−Q

.
(2.17)

We therefore need to estimate the infimum of ‖ζ−1◦z‖K for z ∈ QR
2
(0) and ζ ∈ QR(0)\

Q 3R
4

(0). We first consider the points z̄ := δ 1
R

(z) and ζ̄ := δ 1
R

(ζ) which belong to Q 1
2
(0)

and Q1(0) \ Q 3
4
(0), respectively. We now define the function g(z̄, ζ̄) := ‖ζ̄−1 ◦R z̄‖K ,

which is continuous on the compact set E := Q 1
2
(0)×Q1(0) \ Q 3

4
(0)×[0, 1], as observed

in Remark 2.1. Thus, by Weierstrass’s Theorem, g attains a minimum m on E, i.e.,

‖ζ̄−1 ◦R z̄‖K ≥ m, ∀z̄ ∈ Q 1
2
(0), ∀ζ̄ ∈ Q1(0) \ Q 3

4
(0), ∀R ∈ [0, 1].
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Going back to the box of radius R, i.e. applying dilation δR to the points z̄ and ζ̄
yields

‖ζ−1 ◦ z‖K ≥ mR, z ∈ QR
2
(0), ζ ∈ QR(0) \ Q 3R

4
(0), (2.18)

and therefore (2.17) becomes

sup
{

Γ(z, ζ) : z ∈ QR
2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤ c

mQRQ
=:

C

RQ
(2.19)

where the constant C does not depend on R.
To obtain (2.15) and (2.16), we use the bounds for the derivatives of Γ in (2.12)

and apply the same arguments as above.

3 Preliminary results

In this Section we list some preliminary facts, which are useful in proving our main
results. First, we prove a priori estimates for the derivatives of u solution to the Kol-
mogorov equation with right-hand side equal to 0. To this end, we represent solutions
to L u = 0 as convolutions with the fundamental solution Γ of L and its derivatives
∂x1Γ, ..., ∂xNΓ.

We then prove a mean-value formula for u, which is based on the Euclidean mean-
value theorem and on the homogeneity of the fundamental solution.

In order to state the first result of this Section, we recall the notation introduced
in (1.13), that is δr = diag(rα1 , . . . , rαN , r2). In the sequel we assume that all the
eigenvalues of the constant matrix A belong to some interval [λ,Λ] ⊂ R+. We are now
in position to state our result.

Proposition 3.1. Let u be a solution to L u = 0 in QR(z0), with R ∈]0, 1]. Then

|∂xju|(z) ≤ C

Rαj
‖u‖L∞(QR(z0)), for every z ∈ QR

2
(z0), j = 1, . . . , N,

for some positive constant C only depending on λ,Λ and on the matrix B.

Proof. Without loss of generality, we can assume z0 = 0. Let ηR ∈ C∞0 (RN+1) be a
cut-off function such that

ηR(x, t) = χ(‖(x, t)‖K), (3.1)

where χ ∈ C∞([0,+∞), [0, 1]) is such that χ(s) = 1 if s ≤ 3R
4

, χ(s) = 0 if s ≥ R and
|χ′| ≤ c

R
, |χ′′| ≤ c

R2 . Then, for every z ∈ QR(0) and for i = 1, . . . , N , there exists a
constant c, only depending on B, such that

|∂xiηR(z)| ≤ c

Rαi
, |∂t ηR(z)| ≤ c

R2
. (3.2)
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Consequently, for every z ∈ QR(0) and i, j = 1, . . . ,m, we have |∂2
xixj

ηR(z)| ≤ c
R2 and

therefore we obtain a bound for the second order part of |L ηR(z)|.
Since ηR ≡ 1 in ∈ Q 3R

4
(0), for every z ∈ QR

2
(0) we represent a solution u to L u = 0

as follows

u(z) = (ηRu)(z) = −
∫
QR(0)

[Γ(z, ·)L (ηRu)](ζ)dζ. (3.3)

Since L = div(ADm) + Y and L u = 0 by assumption, (3.3) can be rewritten as

u(z) = (ηRu)(z) = −
∫
QR(0)

[Γ(z, ·)div(ADm(ηR))u](ζ)dζ

−
∫
QR(0)

[Γ(z, ·)Y (ηR)u](ζ)dζ

− 2

∫
QR(0)

[Γ(z, ·)〈Dmu,ADmηR〉](ζ)dζ.

(3.4)

Integrating by parts the last integral in (3.4), we obtain, for every z ∈ QR
2
(0)

u(z) = (ηRu)(z) =

∫
QR(0)

[Γ(z, ·)div(ADm(ηR))u](ζ)dζ

−
∫
QR(0)

[Γ(z, ·)Y (ηR)u](ζ)dζ

+ 2

∫
QR(0)

[〈Dζ
mΓ(z, ·), ADmηR〉u](ζ)dζ,

(3.5)

where Dm is the gradient with respect to x1, . . . , xm and the superscript in Dζ
m indicates

that we are differentiating w.r.t the variable ζ.
Since z ∈ QR

2
(0) and ∂xiηR, Y (ηR) = 0 (i = 1, . . . ,m) in Q 3R

4
(0), after differentiat-

ing under the integral sign (3.5), we find

∂xju(z) = ∂xj(ηRu)(z) =

∫
QR(0)\Q 3R

4
(0)

[∂xjΓ(z, ·)div(ADm(ηR))u](ζ)dζ

−
∫
QR(0)\Q 3R

4
(0)

[∂xjΓ(z, ·)Y (ηR)u](ζ)dζ

+ 2

∫
QR(0)\Q 3R

4
(0)

[〈∂xjDζ
mΓ(z, ·), ADmηR〉u](ζ)dζ,

for every j = 1, ..., N . Thus, we obtain
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|∂xju(z)| = |∂xj(ηRu)(z)| ≤
∫
QR(0)\Q 3R

4
(0)

∣∣[∂xjΓ(z, ·)div(ADm(ηR))u](ζ)
∣∣dζ

+

∫
QR(0)\Q 3R

4
(0)

∣∣[∂xjΓ(z, ·)Y (ηR)u](ζ)
∣∣dζ

+ 2

∫
QR(0)\Q 3R

4
(0)

∣∣[〈∂xjDζ
mΓ(z, ·), ADmηR〉u](ζ)

∣∣dζ
=: Ĩ1(z) + Ĩ2(z) + Ĩ3(z),

We estimate Ĩ1(z) and Ĩ2(z), for z ∈ QR
2
(0). We have

Ĩ1(z) ≤ ‖u‖L∞(QR(0)) sup
QR(0)\Q 3R

4
(0)

|div(ADm(ηR))|meas(QR(0)) sup
z∈QR

2
(0),

ζ∈QR(0)\Q 3R
4

(0)

∣∣∂xjΓ(z, ζ)
∣∣,

Ĩ2(z) ≤ ‖u‖L∞(QR(0)) sup
QR(0)\Q 3R

4
(0)

|Y (ηR)|meas(QR(0)) sup
z∈QR

2
(0),

ζ∈QR(0)\Q 3R
4

(0)

∣∣∂xjΓ(z, ζ)
∣∣.

We now apply Lemma 2.2 and obtain

sup
z∈QR

2
(0),

ζ∈QR(0)\Q 3R
4

(0)

∣∣∂xjΓ(z, ζ)
∣∣ ≤ C̃

RQ+αj
. (3.6)

Moreover, by our choice of the cut-off function ηR, we have

|div(ADm(ηR))| ≤ Λ c

R2
in QR(0), (3.7)

where Λ is the largest eigenvalue of A. Finally, combining inequalities (3.6) and (3.7)
with meas(QR(0)) = RQ+2meas(Q1(0)), we obtain

Ĩ1(z) ≤ C

Rαj
‖u‖L∞(QR(0)), z ∈ QR

2
(0), (3.8)

We now estimate |Y (ηR)| ≤ |〈Bx,DηR〉| + |∂tηR| in QR(0) \ Q 3R
4

(0). The bound for

the derivative with respect to time of ηR is obtained using (3.2). Moreover

|〈Bx,DηR(ζ)〉| ≤
N∑

i,k=1

|bik||xk||∂xiηR(ζ)| ≤ c
N∑

i,k=1

|bik|Rαk−αi , (3.9)
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where ζ ∈ QR(0) \ Q 3R
4

(0). Notice that in sum (3.9) the exponent αk − αi is always

greater or equal to −2, because of the form of the matrix B. Since by assumption
R ≤ 1, we estimate (3.9) as follows

|〈Bx,DηR〉| ≤
C ′

R2
, in QR(0) \ Q 3R

4
(0), (3.10)

where C ′ is a constant that only depends on the matrix B and on the constant c in
(3.2).

Finally, using again meas(QR(0)) = RQ+2meas(Q1(0)), together with (3.6) and
(3.10), we obtain

Ĩ2(z) ≤ C

Rαj
‖u‖L∞(QR(0)), z ∈ QR

2
(0), (3.11)

where C depends only on the constants c and C̃ in (3.2) and (3.6) and on the matrix
B.

By the same argument we prove that, for a point z ∈ QR
2
(0), we have

Ĩ3(z) ≤ ‖u‖L∞(QR(0))
c

R
meas(QR(0)) sup

z∈QR
2

(0),

ζ∈QR(0)\Q 3R
4

(0)

∣∣∂xjDζ
mΓ(z, ζ)

∣∣ ≤ C

Rαj
‖u‖L∞(QR(0)).

where C denotes once again a constant depending only on c, C̃ and B. Combining the
inequality above with (3.8) and (3.11), we finally obtain

‖∂xju‖L∞(QR
2

(0)) ≤
C

Rαj
‖u‖L∞(QR(0)), j = 1, ..., N.

We state a result analogous to Proposition 3.1, written in terms of the vector fields
X1, . . . , Xm, Y introduced in (2.1).

Proposition 3.2. Let u be a solution to L u = 0 in QR(0), for R ∈]0, 1[, then for
any Xi, Xj ∈ {X1, ..., Xm}, there exists a constant C, only depending on λ,Λ and on
the matrix B, such that

|Xiu|(z) ≤ C

R
‖u‖L∞(QR(0)), z ∈ QR

2
(0),

|XiXju|(z) ≤ C

R2
‖u‖L∞(QR(0)), z ∈ QR

2
(0).

Similarly, we have that

|Y u|(z) ≤ C

R2
‖u‖L∞(QR(0)), z ∈ QR

2
(0).
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Proof. The estimate of X1, . . . , Xm has been proved in Proposition 3.1. The proof
of the remaining estimates is obtained by reasoning as in Proposition 3.1, and using
estimates (2.15) and (2.16), respectively. We omit the details here.

In the sequel, we will need to estimate the second order derivatives of a solution to
L u = g, where g is a polynomial of degree at most two. To this end, we let

g1(z) = 〈v, x〉, g2(z) = 〈Mx, x〉, (3.12)

be two polynomial functions, where v and M denote a constant vector of RN and a
N ×N constant matrix, respectively.

Lemma 3.3. Let ηR be the cut-off function introduced in (3.1) and let g1 and g2 be the
functions defined in (3.12). Then there exists a positive constant C, only depending on
λ,Λ and on the matrix B, such that∣∣∣∣∂2

xixj

∫
QR(0)

Γ(z, ζ)ηR(ζ)dζ

∣∣∣∣ ≤ C, (3.13)

∣∣∣∣∂2
xixj

∫
QR(0)

Γ(z, ζ)ηR(ζ)g1(ζ)dζ

∣∣∣∣ ≤ CR, (3.14)∣∣∣∣∂2
xixj

∫
QR(0)

Γ(z, ζ)ηR(ζ)g2(ζ)dζ

∣∣∣∣ ≤ CR2, (3.15)

for every z ∈ QR
2
(0), R ∈]0, 1] and for any i, j = 1, . . . ,m.

Proof. Reasoning as in the proof of Proposition 2.11 in [6], we write the right-hand
side of (3.13) as

∂2
xixj

∫
QR(0)

Γ(ζ−1 ◦ z)ηR(ζ)dζ = lim
ε→0

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z)ηR(ζ)dζ

+ ηR(z)

∫
‖ζ‖K=1

∂xiΓ0(ζ)νjdσ(ζ)

=: lim
ε→0

I0
1 (ε, z) + I0

2 (z).

(3.16)

We rewrite I0
1 (ε, z) as

I0
1 (ε, z) =

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z) (ηR(ζ)− ηR(z)) dζ

+ ηR(z)

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z)dζ.

(3.17)

By the definition of ηR, we have

0 ≤ ηR ≤ 1, ηR(ζ)− ηR(z) = 0, for any ζ ∈ Q 3R
4

(0), z ∈ QR
2
(0). (3.18)
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Thus, taking advantage of Lemma 2.2, we infer∣∣∣∣ ∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z) (ηR(ζ)− ηR(z)) dζ

∣∣∣∣
=

∣∣∣∣ ∫
QR(0)\Q 3R

4 (0)

∂2
xixj

Γ(ζ−1 ◦ z) (ηR(ζ)− ηR(z)) dζ

∣∣∣∣ ≤ C

RQ+2
RQ+2 = C

(3.19)

Thus we find

I0
2 (z) + lim

ε→0
ηR(z)

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z)dζ = C. (3.20)

Combining estimates (3.19) and (3.20) we conclude the proof of (3.13).
We now prove (3.14). Reasoning as in (3.16) and exploiting the definition of g1, we

can rewrite the right-hand side of (3.14) as

∂2
xixj

∫
QR(0)

Γ(ζ−1 ◦ z)ηR(ζ)〈v, ξ〉dζ = lim
ε→0

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z)ηR(ζ)〈v, ξ〉dζ

+ 〈v, x〉ηR(z)

∫
‖ζ‖K=1

∂xiΓ0(ζ)νjdσ(ζ)

=: lim
ε→0

I1
1 (ε, z) + I1

2 (z).

(3.21)

We prove that the first integral in (3.21) uniformly converges as ε → 0+. We first
rewrite I1

1 (ε, z) as

I1
1 (ε, z) =

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z) (ηR(ζ)− ηR(z)) 〈v, ξ〉dζ

+

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z) (ηR(z)) 〈v, ξ − x〉dζ

+ 〈v, x〉ηR(z)

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z)dζ

=: I ′1(ε, z) + I ′2(ε, z) + I ′3(ε, z).

(3.22)

To estimate I ′1(ε, z) we use the same argument as in (3.19), with the only difference
that now in the integral we have the additional term 〈v, ξ〉. We find a bound for this
term observing that

|〈v, ξ〉| ≤ ‖v‖ · ‖ζ‖K ≤ ‖v‖ ·R, (3.23)

where ‖v‖ denotes the norm of v in RN . Therefore, we obtain

|I ′1(ε, z)| ≤ C

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

dζ

‖ζ−1 ◦ z‖Q+1
K

≤ cR, (3.24)
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where C is a constant that depends only on λ,Λ, B and v.
We now show that the same bound holds for I ′2(ε, z). We first observe that

|〈v, x− ξ〉| ≤ ‖v‖ · ‖ζ−1 ◦ z‖K , (3.25)

As a consequence, using again (3.18) and (2.12), we infer

|I ′2(ε, z)| ≤
∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

dζ

‖ζ−1 ◦ z‖Q+1
K

≤ c(R− ε) ≤ cR. (3.26)

Using (3.24) and (3.26) we obtain

lim
ε→0+

I ′1(ε, z) = O(R), lim
ε→0+

I ′2(ε, z) = O(R), as R→ 0. (3.27)

Finally, as for I ′3(ε, z), we compute

lim
ε→0

∫
QR(0)∩{ε≤‖ζ−1◦z‖K≤cR}

∂2
xixj

Γ(ζ−1 ◦ z)dζ

= lim
ε→0

∫
QR(0)∩{ε≤‖ζ−1◦z‖K≤cR}

∂2
wiwj

Γ(w)e−τ trBdw

= − lim
ε→0

∫
‖w‖K=ε

∂wiΓ(w)e−τ trBνjdσj(w) + lim
ε→0

∫
‖w‖K=cR

∂wiΓ(w)e−τ trBνjdσj(w)

= −
∫
‖w‖K=1

∂wiΓ0(w)νjdσj(w) +

∫
‖w‖K=cR

∂wiΓ(w)e−τ trBνjdσj(w).

We then obtain,

I1
2 (z) + lim

ε→0
I ′3(ε, z) = 〈v, x〉ηR(z)

∫
‖ζ‖K=1

∂xiΓ0(ζ)νjdσ(ζ)

− 〈v, x〉ηR(z)

∫
‖w‖K=1

∂wiΓ0(w)νjdσj(w)

+ 〈v, x〉ηR(z)

∫
‖w‖K=cR

∂wiΓ(w)e−τ trBνjdσj(w)

= 〈v, x〉ηR(z)

∫
‖w‖K=cR

∂wiΓ(w)e−τ trBνjdσj(w).

(3.28)

Keeping in mind that

lim
R→0

∫
‖w‖K=cR

∂wiΓ(w)e−τ trBνjdσj(w) =

∫
‖w‖K=1

∂wiΓ0(w)νjdσj(w) = c′,

we finally find
I1

2 (z) + lim
ε→0

I ′3(ε, z) = O(R), as R→ 0. (3.29)
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Identity (3.14) follows from (3.24), (3.26) and (3.29).
By the same argument, we obtain

∂2
xixj

∫
QR(0)

Γ(ζ−1 ◦ z)ηR(ζ)〈Mξ, ξ〉dζ = O(R2). (3.30)

We omit the details here as the procedure is analogous.

From Proposition 3.1 and Lemma 3.3, we derive the following result.

Lemma 3.4. Let w be a solution to Lw = 〈v, ξ〉+ 〈Mξ, ξ〉 in QR(0), where v and M
are as in (3.12). Then

|∂2
xixj

w(z)| ≤ C

R2
‖w‖L∞(QR(0)) + CR, (3.31)

for every i, j = 1, . . . ,m, 0 < R ≤ 1 and for any z ∈ QR
2

(0).

Proof. Reasoning as in Proposition 3.1, we obtain

|∂2
xixj

w(z)| ≤
∫
QR(0)\Q 3R

4
(0)

∣∣[∂2
xixj

Γ(z, ·)div(ADm(ηR))w](ζ)
∣∣dζ

+

∫
QR(0)\Q

(3/4)%k
(0)

∣∣[∂2
xixj

Γ(z, ·)Y (ηR)w](ζ)
∣∣dζ

+ 2

∫
QR(0)\Q 3R

4
(0)

∣∣[∂2
xixj

Γ(z, ·)〈Dmw,ADmηR〉](ζ)
∣∣dζ

+

∣∣∣∣[∂2
xixj

∫
QR(0)

[Γ(z, ·)ηR](ζ)〈v, ξ〉dζ
]∣∣∣∣

+

∣∣∣∣[∂2
xixj

∫
QR(0)

[Γ(z, ·)ηR](ζ)〈Mξ, ξ〉dζ
]∣∣∣∣

=: I1(z) + I2(z) + I3(z) + I4(z) + I5(z).

(3.32)

The terms I1(z), I2(z), I3(z) were already estimated in Proposition 3.1 as

I1(z), I2(z), I3(z) ≤ C

R2
‖w‖L∞(QR(0)), z ∈ QR

2
(0).

Additionally, I4(z) and I5(z) are O(R) in virtue of Lemma 3.3 and thus (3.31) is
proved.

We now prove a mean value theorem for solutions u to L u = 0 in cylinders QR(ζ).
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Proposition 3.5 (Scale invariant Lipschitz estimate). Let ζ be any point of RN+1,
and let u be a solution to L u = 0 in QR(ζ), with R ∈]0, 1]. Then the following estimate
holds

|u(z)− u(ζ)| ≤ C

R
dK(z, ζ)‖u‖L∞(QR(ζ)), (3.33)

for every z ∈ QR
2
(ζ). Here C is a constant that only depends on λ,Λ and on the matrix

B.

Proof. Thanks to the left-invariance of the operator L , it is not restrictive to assume
ζ = 0, then we need to prove

|u(z)− u(0)| ≤ C

R
‖z‖K‖u‖L∞(QR(0)).

Consider z = (x, t) ∈ QR
2
(0), and apply the standard mean-value theorem

|u(z)− u(0)| = |u(x1, . . . , xN , t)− u(0, . . . , 0, 0)|

≤
N∑
i=1

|xi| |∂xiu(ϑ1x1, . . . , ϑNxN , t)|+ |t| |Y u(0, . . . , 0, ϑt),
(3.34)

where ϑ1, . . . , ϑN , ϑ ∈]0, 1[. For every i = 1, . . . , N , we have |xi| ≤ ‖z‖αiK ≤ Rαi , and
(ϑ1x1, . . . , ϑNxN , t) ∈ QR

2
(0). Then, by Proposition 3.1, we find

|∂xiu(ϑ1x1, . . . , ϑNxN , t)| ≤
c

Rαi
‖u‖L∞(QR(0)).

so that

|xi| |∂xiu(ϑ1x1, . . . , ϑNxN , t)| ≤
c

R
‖z‖K‖u‖L∞(QR(0)).

Analogously, we have that |ϑt| ≤ |t| ≤ ‖z‖2
K ≤ R2, and from Proposition 3.2 it follows

that

|Y u(0, . . . , 0, ϑt)| ≤ c

R2
‖u‖L∞(QR(0)),

thus

|t| |Y u(0, . . . , 0, ϑt)| ≤ c

R
‖z‖K‖u‖L∞(QR(0)).

The proof of the proposition can be obtained by combining the above estimates.
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4 Taylor formula

In this Section we prove Theorem 1.3. The proof is based on the method introduced
by Pagliarani, Pascucci and Pignotti in [19] for the dilation-invariant operator L0 and
then generalized by Pagliarani and Pignotti in [20] and by Pignotti in [22] to the non
dilation-invariant one.

We want to emphasize the main differences with respect to the previous approaches
in the literature. The first result about a Taylor inequality in homogeneous groups
goes back to the seminal book of Folland and Stein, [9]. In the proof, they used a
quantitative version of the Carathéodory-Chow-Rashevsky connectivity result and a
Mean Value Theorem. A slightly improved version of this result has been proved by
Bonfiglioli [4] that led him to derive also a Taylor formula with integral remainder.
Both approaches were assuming, for a polynomial of degree n, the differentiability up
to order n in the Euclidean sense. A more intrinsic point of view has been introduced
in the paper [19], where the authors considered functions regular in the intrinsic sense.

In order to prove Theorem 1.3, we follow the same procedure introduced in [19] and
[20, 22] and we point out the modifications needed to deal with our slightly different
situation.

We next introduce some further notation. We define the spaces V0, . . . , Vκ as the
vector subspaces of RN which are invariant with respect to dilation (δr)r>0 introduced
in (1.12). Specifically, for n = 0, . . . , κ, we set

Vn := {0}m̄n−1 × Rmn × {0}N−m̄n ,

where m̄n := m0 + . . .mn, with m−1 ≡ 0. Moreover, we let x[n] be the projection of
x ∈ RN on Vn. Note that

RN =
κ⊕

n=0

Vn, x = x[0] + · · ·+ x[κ], (4.1)

for every x ∈ RN . Moreover, in accordance with the dilation (δr)r>0, we have

δr(x
[n]) = r2n+1x[n], ∀x[n] ∈ Vn, (4.2)

for every n = 0, . . . , κ. In virtue of assumption [H.1], the linear application Bn : V0 →
Vn is surjective; however, it is in general not injective. Thus, we define the subspaces
V0,n ⊂ V0 as follows

V0,n := ker(Bn)⊥.

The linear map Bn : V0,n → Vn is now bijective.

The method of the proof relies on the construction of a finite sequence of points
which connect z = (x, t) and ζ = (ξ, τ) and are located along suitable trajectories.
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More precisely, we start from z and choose z1 = (x1, t1) as the point along the integral
curve of the drift Y satisfying the condition t1 = τ . We then move along the integral
paths of X1, . . . , Xm to a point z2 = (x2, t2) such that x

[0]
2 = ξ[0] and t2 = τ . This allows

us to exploit the regularity of u along the vector fields X1, . . . , Xm, Y and estimate the
remainder in (1.19) in terms of the homogeneous norm of the new points.

Since we have no apriori regularity of u with respect to other vector fields, we
increment the higher level coordinates x[1], . . . , x[κ] by moving along trajectories defined
as concatenations of integral curves of X1, . . . , Xm, Y . Specifically, for any z ∈ RN+1

and s ∈ R we define iteratively the family of trajectories (γ
(n)
v,s (z))n=0,...,κ as follows

γ(0)
v,s(z) = esXv(z) = (x+ sv, t)

γ(n+1)
v,s (z) = e−s

2Y (γ
(n)
v,−s(e

s2Y (γ(n)
v,s (z)))),

(4.3)

where v is a suitable vector in V0, and Xv = v1∂x1 + · · ·+ vm∂xm .
At this point we need to distinguish the dilation-invariant operators from the non

dilation-inviariant ones. In the first case, the trajectories (γ
(n)
v,s (z))n=0,...,κ have the

remarkable property of modifying the components x[n] + · · · + x[κ] leaving unchanged
the components x[0] + · · ·+x[n−1]; thus, we reach the point ζ after κ steps. The proof of
Theorem 1.3, for dilation-invariant operators, follows by exploiting the regularity of u
with respect to X1, . . . , Xm, Y , as we connect z to ζ along integral curves of the vector
fields X1, . . . , Xm, Y . The next example illustrates the geometric construction in the
simplest case, corresponding to κ = 1.

Example 4.1. We consider the degenerate Kolmogorov operator

K0 := ∂2
xx + x∂y − ∂t

and show how to use the trajectories defined in (4.3) to connect an arbitrary point
z ∈ R3 with the origin. In this case, we have

B =

(
0 0
1 0

)
and thus

esX(x, y, t) = (x+ s, y, t), esY (x, y, t) = (x, y + sx, t− s).

Moreover,

R2 = V0 ⊕ V1 = span{e1} ⊕ span{e2}, V0,0 = V0,1 = span{e1}.

Let z = (x, y, t) be a point in R3, and consider for simplicity ζ = (0, 0, 0). We first
adjust the temporal component by moving along the drift Y , and we reach the point

z1 = etY (z) = (x, y + tx, 0).
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We then move along the integral curve of the vector field X to make x equal to 0:

z2 = es0X(z1) = (x+ s0, y + tx, 0) = (0, y + tx, 0), by choosing s0 = −x.

We reached the point z2 ∈ V1 and we plan to steer it to (0, 0, 0). We move along a
curve defined as concatenation of integral paths of X and Y as follows:

z3 = es1X(z2) = (s1, y + tx, 0),

z4 = es
2
1Y (z3) = (s1, y + tx+ s3

1,−s2
1),

z5 = e−s1X(z4) = (0, y + tx+ s3
1,−s2

1),

z6 = e−s
2
1Y (z5) = (0, y + tx+ s3

1, 0),

(4.4)

and we reach the point ζ = (0, 0, 0) if we choose s1 = (−tx− y)
1
3 .

When considering a non dilation-invariant operator L , the method illustrated
above fails. Indeed, in this case the trajectory (γ

(n)
v,s (z)) may affect the components

x[0] + · · ·+ x[n−1], as the following example shows.

Example 4.2. We consider the degenerate Kolmogorov operator

K := ∂2
xx + x∂y + x∂x − ∂t. (4.5)

In this case, B takes the form

B =

(
1 0
1 0

)
.

and therefore the operator K is non dilation-invariant. Let us emphasize the differences
with the dilation-invariant case studied in Example 4.1. We denote again the points in
R3 by z = (x, y, t) and consider ζ = (0, 0, 0). The first two steps of the procedure used
in Example 4.1 allow us to move from z to some point z1 = (x1, y1, 0), then to some
other point z2 = (0, y2, 0). The difference with the homogeneous case arises in the third
step, i.e. when we are dealing with the y-variable.

Let us suppose we want to move from any point z = (0, y, 0) ∈ V1 to the origin
(0, 0, 0). If we reproduce the same construction as in (4.4), we find:

z1 = esX(z) = (s, y, 0),

z2 = es
2Y (z1) = (ses

2

,−s+ ses
2

+ y,−s2),

z3 = e−sX(z2) = (ses
2 − s,−s+ ses

2

+ y,−s2),

z4 = e−s
2Y (z3) = (s(1− e−s2), s(1− e−s2) + y, 0).

(4.6)

If we choose s such that s(1− e−s2) = −y, we obtain z4 = (−y, 0, 0), so that its second
component is zero but, in constrast with the previous Example 4.1, we have that z4

doesn’t agree with our target point ζ = (0, 0, 0).
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In order to reach the point ζ = (0, 0, 0) also in the case of non dilation-invariant
operators, we rely on the method introduced by Pagliarani and Pignotti in [20] and by
Pignotti in [22]. In the case of the operator K in (4.5) it is sufficient to use once more
the integral curve of the vector field X = ∂x. In the case of more general operators
a further topological argument is needed to conclude the construction. We refer to
[20, 22] for a detailed description of this construction.

We are now ready to prove our result.

Proof of Theorem 1.3. Let z = (x, t), ζ = (ξ, τ) be two given points of Ω. As ex-
plained above, the proof relies on a finite sequence of integral paths of the vector fields
X1, . . . , Xm and Y connecting z to ζ. We use the construction made by Pagliarani,
Pascucci and Pignotti [19] for a dilation-invariant operator L . In this case the tra-

jectories (γ
(n)
v,s (z))n=0,...,κ defined in (4.3) are explicitely given and we prove that (1.19)

holds. We then discuss the modifications needed to deal with any non dilation-invariant
operator L , as introduced by Pagliarani and Pignotti in [20] and by Pignotti in [22].

As a preliminary result, we prove our claim (1.19) under the assumption that the
points z = (x, t) and ζ = (ξ, τ) have the same temporal component t = τ , by a finite
iteration on n = 0, . . . , κ. We remove this assumption in the last part of the proof.

Base case n = 0. In this case, we are only changing the variables xi, for i = 1, . . . ,m,
moving along the direction es0Xv0 where v0 = (v0,1, . . . , v0,m, 0 . . . , 0) is a suitable unit
vector in V0. Thus, equation (1.18), with z = (x, t) and ζ = (x+ s0v0, t), rewrites as

T 2
z u(ζ) = u(x, t) +

m∑
i=1

∂xiu(x, t)s0v0,i +
s2

0

2

m∑
i,j=1

∂2
xi,xj

u(x, t)v0,iv0,j. (4.7)

We observe that ‖z−1 ◦ ζ‖2
K = |s0|2 and therefore we want to show that

u(ζ)− T 2
z u(ζ) = o(|s0|2) as s0 → 0. (4.8)

By the multidimensional euclidean mean-value theorem, there exist (v̄i,j)1≤i,j≤m,
with v̄i,j ∈ span{e1, . . . , em} and |v̄i,j| ≤ |v0| such that

u(ζ)− T 2
z u(ζ) =

s2
0

2

m∑
i,j=1

(∂2
xi,xj

u(x+ s0v̄i,j, t)v0,iv0,j − ∂2
xi,xj

u(x, t))v0,iv0,j

= o(|s0|2) as s0 → 0,

(4.9)

where we have used the continuity of the second order derivatives of u. Thus, we have
proved (4.8) and we are done.

Let us remark that we do not need the dilation-invariance property for Y , as we do
not make use of the vector field Y in this part of the construction.

Inductive step. Suppose that the thesis is true for a given non negative n < κ. We
prove it for n+ 1. For every z, ζ ∈ RN+1 we set

T̃ 2
z u(ζ) := T 2

z u(ζ)− u(z). (4.10)
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We define the points

z = (x, t), z1 = γ(n)
v,s (z), z2 = es

2Y (z1)

z3 = γ
(n)
v,−s(z2), z4 = e−s

2Y (z3) = γ(n+1)
v,s (z)

where v is the unique unitary vector in V0,n+1 ⊂ V0, defined as v = w
|w| , where w is the

vector in V0,n+1 such that Bn+1w = ζ [n+1]− z[n+1] and s = |w|
1

2(n+1)+1 . We aim to prove
that

u(z4)− T 2
z u(z4) = o(‖z−1 ◦ z4‖2

K) = o(|s|2) as s→ 0. (4.11)

We now rewrite (4.11) by using the notation (4.10) as follows

u(z4)− T 2
z u(z4) = u(z4)− u(z3)

(1)

+ u(z3)− u(z2)− T̃ 2
z2
u(z3)

(2)

+ u(z2)− u(z1)
(3)

+ T̃ 2
z1
u(z) + u(z1)− u(z)

(4)

+ T̃ 2
z2
u(z3)− T̃ 2

z1
u(z)

(5)

− T̃ 2
z u(z4)

(6)
.

(4.12)

By the inductive hypothesis, the second and the forth difference are o(|s|2) as s→ 0.

Moreover, recalling (1.18), we have that T̃ 2
z u(z4) ≡ 0, being x

[0]
4 = x[0] and t4 = t.

We next apply definition (1.18) to the fifth difference, and we find

T̃ 2
z2
u(z3)− T̃ 2

z1
u(z) =− s

m∑
i=1

(∂xiu(z2)− ∂xiu(z1))vi

− s2

2

m∑
i,j=1

(∂2
xixj

u(z2)− ∂2
xixj

u(z1))vivj.

(4.13)

As an immediate consequence of condition (1.8), we obtain the following equation

∂xiu(z2)− ∂xiu(z1) = ∂xiu(es
2Y (z1))− ∂xiu(z1) = o(|s|).

Using the previous equation and the continuity of second order derivatives of u, we
find that (4.13) is equal to o(|s|2).

We now observe that

u(z4)− u(z3) = u(e−s
2Y (z3))− u(z3).
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By applying the mean value theorem along the direction of the drift, we find that there
exists s̄ such that

u(e−s
2Y (z3))− u(z3) = −s2Y u(es̄Y (z3)),

where |s̄| ≤ |s|. Similarly we obtain that

u(z2)− u(z1) = s2Y u(es̃Y (z1)),

where again s̃ verifies |s̃| ≤ |s|.
By letting s→ 0, we find that s̄, s̃→ 0, and therefore, using the continuity of Y u,

we have showed that the sum of the first and the third difference in (4.12) is again
equal to o(|s|2) as s → 0. This proves (4.11) and therefore concludes the proof of the
inductive step.

As already pointed out, the construction of the trajectories in the case of non
dilation-invariant operators requires the adjustments introduced in [20, 22], to deal

with the fact that the term T̃ 2
z u(z4) in (4.12) fails to vanish. Indeed, with the notation

(4.1), x writes as x = x[0]+x[1]+· · ·+x[κ], and we have T̃ 2
z u(z4) 6= 0 whenever x

[0]
4 6= x[0].

To overcome this problem, we define a new point z5 = (x5, t5) as follows:

x
[0]
5 = x[0], x

[1]
5 = x

[1]
4 , . . . , x

[κ]
5 = x

[κ]
4 , t5 = t4.

Note that in [20, 22] it is proved that∣∣∣x[0] − x[0]
4

∣∣∣ ≤ C‖z−1 ◦ ζ‖K ,

for some positive constant C only depending on the matrix B. Then

u(z5)− u(z4) = o(‖z−1 ◦ ζ‖2
K) as ζ → z. (4.14)

With this modification, expression (4.12) is replaced by

u(z5)− T 2
z u(z5) = u(z5)− u(z4)− T̃ 2

z u(z5) + o(‖z−1 ◦ ζ‖2
K) as ζ → z.

Moreover, x
[0]
5 = x[0] and t5 = t yield T̃ 2

z u(z5) = 0. From (4.14) it then follows that

u(z5)− T 2
z u(z5) = o(‖z−1 ◦ ζ‖2

K) as ζ → z.

We are now in position to prove (1.19). We first consider the point z̄ = e(t−τ)Y (z) =
(e(t−τ)Bx, τ) and write

u(ζ)− T 2
z u(ζ) = u(ζ)− T 2

z̄ u(ζ) + T 2
z̄ u(ζ)− T 2

z u(ζ). (4.15)

Thanks to the previous steps, the first difference is o(‖z̄−1 ◦ ζ‖2
K) = o(‖z−1 ◦ ζ‖2

K) as
‖z−1 ◦ ζ‖2

K → 0, since ζ and z̄ have the same temporal component τ . At the same
time, the second difference in (4.15) can be rewritten as
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T 2
z̄ u(ζ)− T 2

z u(ζ) = u(z̄)− u(z) +
m∑
i=1

(∂xiu(z̄)− ∂xiu(z)) (ξi − xi)

+
1

2

m∑
i,j=1

(
∂2
xixj

u(z̄)− ∂2
xixj

u(z)
)

(ξi − xi)(ξj − xj) + Y u(z)(τ − t).

(4.16)

Using the mean value theorem along the drift, we can rewrite difference u(z̄)− u(z) in
(4.16) as

u(e(t−τ)Y (z))− u(z) = (t− τ)Y u(eδY (z)), (4.17)

where δ is such that |δ| ≤ |t− τ |. Hence, we obtain

u(z̄)− u(z)− Y (z)(t− τ) = (t− τ)(Y u(eδY (z))− Y (z)), (4.18)

which is o(|t− τ |) = o(‖z−1 ◦ ζ‖2
K) as ‖z−1 ◦ ζ‖2

K → 0, thanks to the continuity of Y u.
We observe that we can apply condition (1.8) to the point z, which is not fixed,

thanks to the fact that such a condition holds locally uniformly. Hence, using the
aforemention condition (1.8), together with the continuity of the second derivatives of u,
we obtain that the second and third difference in (4.16) are also o(|t−τ |) = o(‖z−1◦ζ‖2

K)
as ‖z−1 ◦ ζ‖2

K → 0.
Combining all the previous estimates, we obtain

T 2
z̄ u(ζ)− T 2

z u(ζ) = o(‖z−1 ◦ ζ‖2
K), as ‖z−1 ◦ ζ‖2

K → 0. (4.19)

and therefore (4.15) is equal to o(‖z−1 ◦ ζ‖2
K) as ‖z−1 ◦ ζ‖2

K → 0. This concludes the
proof.

5 Proof of Theorem 1.6

We first prove a preliminary lemma, which is a straightforward consequence of the
maximum principle.

Lemma 5.1. Given ϕ ∈ C(∂QR(z0)) and g ∈ Cb(QR(z0)), we let v be the solution to
the following Dirichlet problem{

L v = g, in QR(z0),
v = ϕ, in ∂QR(z0).

Then, the following holds

‖v‖L∞(QR(z0)) ≤ ‖ϕ‖L∞(QR(z0)) + |t− t1|‖g‖L∞(QR(z0)), (5.1)

where t1 = t0 −R2 is the time coordinate of the basis of the cylinder QR(z0).
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Proof. We introduce the function w(x, t) := (t − t1)‖g‖L∞(QR(z0)) + ‖ϕ‖L∞(QR(z0)) and
we let u := v − w. Clearly, u satisfies L u = g + ‖g‖L∞(QR(z0)) ≥ 0 in QR(z0).
Moreover, as v ≡ ϕ on the boundary of QR(z0), we have u = ϕ−(t− t1)‖g‖L∞(QR(z0))−
‖ϕ‖L∞(QR(z0)) ≤ 0 in ∂QR(z0). By the strong maximum principle, it follows that
u(x, t) ≤ 0 in QR(z0). Replacing v by −v, estimate (5.1) follows at once.

Proof of Theorem 1.6. We first prove assertion (ii). We denote Qk = Q%k(0), % = 1
2

and we consider the following sequence of Dirichlet problems:{
L uk = f(0), in Qk
uk = u, in ∂Qk

(5.2)

For any point z = (x, t) satisfying ‖z‖K ≤ 1
2
, we want to estimate the quantity

I(z) := |∂2u(z)− ∂2u(0)|,

where ∂2u(z) stands for either ∂2
xixj

u(z), with i, j = 1, . . . ,m, or Y u(z). To this end,
we write I as the sum of three terms:

I(z) ≤ |∂2uk(z)− ∂2uk(0)|+ |∂2uk(0)− ∂2u(0)|+
+ |∂2u(z)− ∂2uk(z)| =: I1(z) + I2(z) + I3(z).

We first estimate I2. Following [25], we prove that (∂2uk(0))k∈N is a Cauchy sequence
and that its limit agrees with ∂2u(0). The same assertion holds for I3 of course.

First, we let vk := u − uk and we observe that vk satisfies the Dirichlet boundary
value problem {

L vk = f − f(0), in Qk
vk = 0, in ∂Qk

(5.3)

From Lemma 5.1 it follows that

‖vk‖∞ ≤ 4%2k‖f − f(0)‖∞ ≤ 4%2kωf (%
k). (5.4)

Moreover, since L (uk − uk+1) = 0 in Qk+1, we apply Proposition 3.2 and Lemma 5.1,
and we find

‖∂xi(uk − uk+1)‖L∞(Qk+2) ≤ C%−k−2 sup
Qk+1

|uk − uk+1|

≤ C%−k
(

sup
Qk+1

|vk|+ sup
Qk+1

|vk+1|
)

≤ C%−k%2kωf (%
k) = C%kωf (%

k), (5.5)

for any i = 1, . . . ,m. In the same way, we obtain

‖∂2
xixj

(uk − uk+1)‖L∞(Qk+2) ≤ C%−2k−4 sup
Qk+1

|uk − uk+1|

≤ C%−2k%2kωf (%
k) = Cωf (%

k) (5.6)
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for i, j = 1, . . . ,m, and

‖Y (uk − uk+1)‖L∞(Qk+2) ≤ C%−2k−4 sup
Qk+1

|uk − uk+1|

≤ C%−2k%2kωf (%
k) = Cωf (%

k). (5.7)

Let k ≥ 1 such that %k+4 ≤ ‖z‖K ≤ %k+3 , then we have:

∞∑
l=k

|∂2ul(0)− ∂2ul+1(0)| ≤ C
∞∑
l=k

ωf (%
l) ≤ C

∫ ‖z‖K
0

ωf (r)

r
dr. (5.8)

We next identify the sum of the series
∑∞

l=k (∂2ul(0)− ∂2ul+1(0)) as

∞∑
l=k

(
∂2ul(0)− ∂2ul+1(0)

)
= ∂2uk(0)− ∂2u(0). (5.9)

To this end, we first consider the derivative ∂2
xixj

uk and we prove that

lim
k→+∞

∂2
xixj

uk(0) = ∂2
xixj

T 2
0 u(0), (5.10)

where T 2
0 u(ζ) is the second-order Taylor polynomial of u around the origin, computed

at some point ζ = (ξ, τ) ∈ Qk:

T 2
0 u(ζ) = u(0) +

m∑
i=1

∂xiu(0)ξi +
1

2

m∑
i,j=1

∂2
xixj

u(0)ξiξj − Y u(0)τ.

Thus, by applying Theorem 1.3 to u ∈ C2
L (Q1(0)), we obtain from (5.10) that

lim
k→+∞

∂2
xixj

uk(0) = ∂2
xixj

u(0). (5.11)

We compute L T 2
0 u in ζ = (ξ, τ) as

L T 2
0 u(ζ) =

m∑
i,j=1

aij∂
2
ξiζj
u(0)− ∂tu(0) +

N∑
j=1

( m∑
i=1

bij∂ξiu(0)

)
ξj +

N∑
l,j=1

( m∑
i=1

bil∂
2
ξjξi
u(0)

)
ξlξj

=
m∑

i,j=1

aij∂
2
ξiζj
u(0)− ∂tu(0) + 〈v, ξ〉+ 〈Mξ, ξ〉,

where v = (vj)j=1,...,N = (
∑m

i=1 bij∂ξiu(0))j=1,...,N is a constant vector of RN and M =

(mlj)l,j=1,...,N =
(∑m

i=1 bil∂
2
ξjξi
u(0)

)
l,j=1,...,N

is a N ×N constant matrix.

In addition, as L u = f in Qk, we have that

m∑
i,j=1

aij∂
2
ξiζj
u(0)− ∂tu(0) = L0u(0) = L u(0) = f(0) (5.12)
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and thus

L T 2
0 u(ζ) = f(0) + 〈v, ξ〉+ 〈Mξ, ξ〉. (5.13)

Thus, the definition of uk in (5.2) gives us

L
(
T 2

0 u− uk
)

(ζ) = 〈v, ξ〉+ 〈Mξ, ξ〉, ζ ∈ Qk. (5.14)

We now apply Lemma 3.4 to T 2
0 u− uk for R = %k and infer

|∂2
xixj

(uk − T 2
0 u)(0)| ≤ C%−2k sup

Qk
|uk − T 2

0 u|+O(%k). (5.15)

Moreover, since T 2
0 u is the second-order Taylor polynomial of u, we have u(ζ) =

T 2
0 u(ζ) + o(‖ζ‖2

K). It follows that

sup
ζ∈Qk
|u− T 2

0 u| = o(%2k) (5.16)

Thus, from estimates (5.16) and (5.4), we obtain

sup
Qk
|uk − T 2

0 u| ≤ sup
Qk
|vk|+ sup

Qk
|u− T 2

0 u| ≤ 4ωf (%
k)%2k + o(%2k) ≤ o(%2k). (5.17)

Estimates (5.15) and (5.17) finally yield

|∂2
xixj

(uk − T 2
0 u)(0)| ≤ C%−2k sup

Qk
|uk − T 2

0 u|+O(%k) ≤ C%−2ko(%2k) +O(%k) ≤ o(1),

where, as usual, the indexes i and j range from 1 to m. Thus, for any i, j = 1, . . . ,m
we have showed that (5.10) holds true. Repeating the same argument for the vector
field Y , and using again Theorem 1.3, we obtain:

lim
k→+∞

Y uk(0) = Y T 2
0 u(0) = Y u(0).

In conclusion, using (5.8), we obtain:

I2 ≤
∞∑
l=k

|∂2ul(0)− ∂2ul+1(0)| ≤ C

∫ ‖z‖K
0

ωf (r)

r
dr, (5.18)

for k ≥ 1 such that %k+4 ≤ ‖z‖K ≤ %k+3. Similarly, we can estimate I3 through the
solution of L v = f(z) in Qj(z) and v = u on ∂Qj(z) and obtain

I3 ≤
∞∑
l=k

|∂2ul(z)− ∂2ul+1(z)| ≤ C

∫ ‖z‖K
0

ωf (r)

r
dr. (5.19)
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Finally, let us estimate I1. Since hk = uk − uk+1 ∈ C∞(Qk+2), we can apply
Proposition 3.5 to the functions ∂2

xixj
hk and Y hk:

|∂2
xixj

hk(z)− ∂2
xixj

hk(0)| ≤ C

%k
‖z‖K‖∂2

xixj
hk‖L∞(Qk+1)

and

|Y hk(z)− Y hk(0)| ≤ C

%k
‖z‖K‖Y hk‖L∞(Qk+1),

for i, j = 1, . . . ,m. We can now apply once again (5.6) to obtain

|∂2
xixj

hk(z)− ∂2
xixj

hk(0)| ≤ C

%k
‖z‖K‖∂2

xixj
hk‖L∞(Qk+1) ≤ C‖z‖K%−kωf (%k).

In addition, thanks to (5.7), we infer

|Y hk(z)− Y hk(0)| ≤ C

%k
‖z‖K‖Y hk‖L∞(Qk+1) ≤ C‖z‖K%−kωf (%k).

Hence, since uk(z)− uk(0) = u0(z)− u0(0) +
∑k−1

j=0 (hj(0)− hj(z)), we have

I1 ≤ |∂2u0(z)− ∂2u0(0)|+
k−1∑
j=0

|∂2hj(z)− ∂2hj(0)|

≤ C‖z‖K
(
‖u0‖L∞(Q0) + C

k−1∑
j=0

%−jωf (%
j)
)

≤ C‖z‖K
(
‖u‖L∞(Q1(0)) + ‖f‖L∞(Q1(0)) + C

∫ 1

‖z‖K

ωf (r)

r2

)
.

Combining the above estimate with (5.18) and (5.19), we complete the proof of (ii).

We now prove assertion (i). We consider u1 solution to the following Dirichlet
problem {

L u1 = f(0), in Q1/2(0)
u1 = u, in ∂Q1/2(0)

Then, we have

|∂2u(0)| ≤ |∂2u(0)− ∂2u1(0)|+ |∂2u1(0)| (5.20)

Thanks to (5.18), we can estimate the first term in (5.20) as

|∂2u(0)− ∂2u1(0)| ≤ C

∫ 1

0

ωf (r)

r
dr. (5.21)
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To estimate the second term in (5.20), we consider the function v(z) := u1(z)η1/2(z),
where η1/2 is the cut-off function introduced in (3.1) with R = 1

2
. Reasoning as in the

proof of Proposition 3.1, we obtain

u(z) = v(z) =

∫
Q 1

2
(0)

[Γ(z, ·)div(ADm(η1/2))u1](ζ)dζ

−
∫
Q 1

2
(0)

[Γ(z, ·)Y (η1/2)u1](ζ)dζ

−
∫
Q 1

2
(0)

[Γ(z, ·)η1/2L (u1)](ζ)dζ

+ 2

∫
Q 1

2
(0)

[〈Dζ
mΓ(z, ·), ADmη1/2〉u1](ζ)dζ,

where z ∈ Q 1
4
(0). Thanks to Lemma 5.1, we estimate

sup
Q 1

2
(0)

|u1| ≤ sup
Q 1

2
(0)

|u|+ 4|f(0)|.

As the derivatives of η1/2 vanish in Q3/8(0), for any i, j = 1, . . . ,m, we obtain

|∂2
xixj

u1(z)| ≤
∫
Q 1

2
(0)\Q 3

8
(0)

∣∣[∂2
xixj

Γ(z, ·)div(ADm(η1/2))u1](ζ)
∣∣dζ

+

∫
Q 1

2
(0)\Q 3

8
(0)

∣∣[∂2
xixj

Γ(z, ·)Y (η1/2)u1](ζ)
∣∣dζ

+ 2

∫
Q 1

2
(0)\Q 3

8
(0)

∣∣[〈∂2
xixj

Dζ
mΓ(z, ·), ADmη1/2〉u1](ζ)

∣∣dζ
+

∣∣∣∣f(0)
[
∂2
xixj

∫
Q 1

2
(0)

[Γ(z, ·)η1/2](ζ)dζ
]∣∣∣∣

=: I1(z) + I2(z) + I3(z) + I4(z).

(5.22)

Moreover, as the derivatives of η1/2 are bounded, we estimate the first and second
integral in (5.22) as

I1(z) ≤ C
[

sup
Q 1

2
(0)

|u|+ 4|f(0)|
]
,

I2(z) ≤ C
[

sup
Q 1

2
(0)

|u|+ 4|f(0)|
]
,

I3(z) ≤ C
[

sup
Q 1

2
(0)

|u|+ 4|f(0)|
]
.
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Finally, by taking advantage of (3.13), we obtain that I4(z) is bounded by a constant
C that only depends on B, λ and Λ.

By using the same argument we can estimate |Y u1(0)| and thus

|∂2u1(0)| ≤ C
[

sup
Q 1

2
(0)

|u|+ 4|f(0)|
]
. (5.23)

Combining estimates (5.20) and (5.23), we conclude the proof of Theorem 1.6.

6 Dini continuous coefficients

This Section is devoted to the proof of Theorem 1.7. We therefore consider a solution
u to the equation

L̃ u = f,

where the operator L̃ does satisfy the hypotheses [H.1] and [H.2] and f is assumed
to be Dini continuous, and we proceed as in the proof of Theorem 1.6. Specifically,
we denote Qk = Q%k(0), % = 1

2
and we consider the following sequence of Dirichlet

problems: 
m∑

i,j=1

aij(0, 0)∂2
xixj

uk + Y uk = f(0), in Qk

uk = u, on ∂Qk.
(6.1)

Note that the bounds given in Propositions 3.1, 3.2 and 3.5 only depend on the con-
stants λ,Λ in [H.2] and on the matrix B. Keeping in mind this fact, the proof of
Theorem 1.7 is given by the same argument used in the proof of Theorem 1.6.

Proof of Theorem 1.7. Consider, for every k ∈ N, the auxiliary function vk := u− uk,
and note that it is a solution to the boundary value problem

m∑
i,j=1

aij(0, 0)∂2
xixj

vk + Y vk

= f − f(0) +
m∑

i,j=1

(aij(0)− aij(x, t))∂2
xixj

u, in Qk

vk = 0, in ∂Qk

(6.2)

In order to simplify the notation, we let

η := max
i,j=1,...,m

‖∂2
xixj

u‖L∞(Q1). (6.3)

From Lemma 5.1 it follows that

‖vk‖L∞(Qk) ≤ C%2k[ωf (%
k) + ωa(%

k)η].
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Hence

‖uk − uk+1‖L∞(Qk+1) ≤ C%2k[ωf (%
k) + ωa(%

k)η].

As already observed, we can apply Corollary 3.2 and obtain estimates for the second
order derivatives of vk. In fact, for any i, j = 1, . . . ,m, we have

‖∂2
xixj

(uk − uk+1)‖L∞(Qk+2) ≤ C(%k)−2 sup
Qk+1

|uk − uk+1|

≤ C%−2k%2k[ωf (%
k) + ωa(%

k)η] = C[ωf (%
k) + ωa(%

k)η]
(6.4)

and

‖Y (uk − uk+1)‖L∞(Qk+2) ≤ C(%k)−2 sup
Qk+1

|uk − uk+1|

≤ C%−2k%2k[ωf (%
k) + ωa(%

k)η] = C[ωf (%
k) + ωa(%

k)η] (6.5)

To estimate the second order derivatives of the function u, we apply Theorem 1.3
and proceed as in the proof of Theorem 1.6. Since there are no significant differences,
we omit the details here.
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