In recent years, internal combustion engine (ICE) downsizing coupled with turbocharging was considered the most effective path to improve engine efficiency at low load, without penalizing rated power/torque performance at full load. On the other side, issues related to knocking combustion and excessive exhaust gas temperatures obliged adopting countermeasures that highly affect the efficiency, such as fuel enrichment and delayed combustion. Powertrain electrification allows operating the ICE mostly at medium/high loads, shifting design needs and constraints towards targeting high efficiency under those operating conditions. Conversely, engine efficiency at low loads becomes a less important issue. In this track, the aim of this work is the investigation of the potential of the oversizing of a small Variable Valve ActuationSpark Ignition gasoline engine towards efficiency increase and tailpipe emission reduction. To enhance the potential improvements of such an approach, a lean combustion concept is adopted, where the flame speed propagation is supported by doping gasoline with the addition of a percentage of hydrogen (10% by mass). The analysis is carried out by a 1D simulation tool, widely validated for the base engine supplied with pure gasoline and under stoichiometric/rich combustion. The combustion and knock models are here extended to handle the flame speed and auto-ignition characteristics of gasoline/H2 blends. The comparison between the base gasoline engine and the oversized gasoline/H2 variant highlights significant efficiency advantages at full load operations, which are due to the possibility to remove fuel enrichment and combustion delays. Exceptfor unburned hydrocarbons, pollutants and CO2 emissionsare reducedthanks to the synergic effects of H2addition and ultra-lean mixtures. A certain penalization of efficiency arises at very low loads, where engine oversizingdegrades the combustion process.

Potentials of the Oversizing and H2-Supported Lean Combustion of a VVA SI Gasoline Engine towards Efficiency Improvement / Bozza, F.; Berni, F.; Cicci, F.; D'Adamo, A.; De Bellis, V.; Fontanesi, S.; Malfi, E.; Pessina, V.; Teodosio, L.. - In: SAE TECHNICAL PAPER. - ISSN 0148-7191. - 1:2021(2021). (Intervento presentato al convegno SAE 15th International Conference on Engines and Vehicles, ICE 2021 tenutosi a ita nel 2021) [10.4271/2021-24-0007].

Potentials of the Oversizing and H2-Supported Lean Combustion of a VVA SI Gasoline Engine towards Efficiency Improvement

Berni F.;Cicci F.;D'Adamo A.;Fontanesi S.;Pessina V.;
2021

Abstract

In recent years, internal combustion engine (ICE) downsizing coupled with turbocharging was considered the most effective path to improve engine efficiency at low load, without penalizing rated power/torque performance at full load. On the other side, issues related to knocking combustion and excessive exhaust gas temperatures obliged adopting countermeasures that highly affect the efficiency, such as fuel enrichment and delayed combustion. Powertrain electrification allows operating the ICE mostly at medium/high loads, shifting design needs and constraints towards targeting high efficiency under those operating conditions. Conversely, engine efficiency at low loads becomes a less important issue. In this track, the aim of this work is the investigation of the potential of the oversizing of a small Variable Valve ActuationSpark Ignition gasoline engine towards efficiency increase and tailpipe emission reduction. To enhance the potential improvements of such an approach, a lean combustion concept is adopted, where the flame speed propagation is supported by doping gasoline with the addition of a percentage of hydrogen (10% by mass). The analysis is carried out by a 1D simulation tool, widely validated for the base engine supplied with pure gasoline and under stoichiometric/rich combustion. The combustion and knock models are here extended to handle the flame speed and auto-ignition characteristics of gasoline/H2 blends. The comparison between the base gasoline engine and the oversized gasoline/H2 variant highlights significant efficiency advantages at full load operations, which are due to the possibility to remove fuel enrichment and combustion delays. Exceptfor unburned hydrocarbons, pollutants and CO2 emissionsare reducedthanks to the synergic effects of H2addition and ultra-lean mixtures. A certain penalization of efficiency arises at very low loads, where engine oversizingdegrades the combustion process.
2021
SAE 15th International Conference on Engines and Vehicles, ICE 2021
ita
2021
1
Bozza, F.; Berni, F.; Cicci, F.; D'Adamo, A.; De Bellis, V.; Fontanesi, S.; Malfi, E.; Pessina, V.; Teodosio, L.
Potentials of the Oversizing and H2-Supported Lean Combustion of a VVA SI Gasoline Engine towards Efficiency Improvement / Bozza, F.; Berni, F.; Cicci, F.; D'Adamo, A.; De Bellis, V.; Fontanesi, S.; Malfi, E.; Pessina, V.; Teodosio, L.. - In: SAE TECHNICAL PAPER. - ISSN 0148-7191. - 1:2021(2021). (Intervento presentato al convegno SAE 15th International Conference on Engines and Vehicles, ICE 2021 tenutosi a ita nel 2021) [10.4271/2021-24-0007].
File in questo prodotto:
File Dimensione Formato  
2021-24-0007.pdf

Accesso riservato

Descrizione: Versione pubblicata.
Tipologia: Versione pubblicata dall'editore
Dimensione 2.97 MB
Formato Adobe PDF
2.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1255844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact