Let $G$ be a finite group. We show that the order of the subgroup generated by coprime $gamma_k$-commutators (respectively $delta_k$-commutators) is bounded in terms of the size of the set of coprime $gamma_k$-commutators (respectively $delta_k$-commutators). This is in parallel with the classical theorem due to Turner-Smith that the words $gamma_k$ and $delta_k$ are concise.

Conciseness of coprime commutators in finite groups / Acciarri, C; Shumyatsky, P; Thillaisundaram, A. - In: BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 0004-9727. - 89:2(2014), pp. 252-258. [10.1017/S0004972713000361]

Conciseness of coprime commutators in finite groups

Acciarri C;
2014-01-01

Abstract

Let $G$ be a finite group. We show that the order of the subgroup generated by coprime $gamma_k$-commutators (respectively $delta_k$-commutators) is bounded in terms of the size of the set of coprime $gamma_k$-commutators (respectively $delta_k$-commutators). This is in parallel with the classical theorem due to Turner-Smith that the words $gamma_k$ and $delta_k$ are concise.
89
2
252
258
Conciseness of coprime commutators in finite groups / Acciarri, C; Shumyatsky, P; Thillaisundaram, A. - In: BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 0004-9727. - 89:2(2014), pp. 252-258. [10.1017/S0004972713000361]
Acciarri, C; Shumyatsky, P; Thillaisundaram, A
File in questo prodotto:
File Dimensione Formato  
conciseness-of-coprime-commutators-in-finite-groups_L.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 167.31 kB
Formato Adobe PDF
167.31 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1255531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact